Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Глава 10.НАДЕЖНОСТЬ СИСТЕМ С НАГРУЖЕННЫМ РЕЗЕРВИРОВАНИЕМ





 

Рассматривается система, состоящая из одного основного и (n - 1) резервных элементов.

При условии, что отказы элементов независимы, отказ системы происходит только при отказе всех n элементов.

Структура системы

Случайная наработка до отказа:

(система работоспособна до тех пор, пока работоспособен хотя бы один элемент).

Поскольку отказ системы есть событие, которое заключается в одновременном появлении событий – отказах всех элементов, то

· вероятность отказа (ВО):

 

· вероятность безотказной работы (ВБР):

 

· математическое ожидание (МО) наработки до отказа:

При идентичных элементах системы, т. е. P1(t) = … = Pn(t)

 

· ВБР:

 

· ВО:

 

· МО наработки до отказа:

Для системы с экспоненциальной наработкой до отказа каждого из n элементов:

Pi(t) = exp(- i t),

где i = const показатели безотказности:

 

Таким образом, при нагруженном резервировании экспоненциальное распределение наработки до отказа не сохраняется.

При идентичных n элементах системы МО наработки до отказа:

При большом n (n ), T 1/ ·( ln n + c), где c = 0.577….

При неидентичных элементах:

Для системы с n идентичными элементами P1(t) = … = Pn(t) решаются задачи оптимизации (в различных постановках).

1. Определение числа n элементов системы, при котором вероятность отказа (ВО) системы Qс(t) не будет превосходить заданной Qс.

Поскольку Qс(t) = Qin(t), то условие задачи

Qin(t) Qс(t).

Из приведенного неравенства определяется минимально необходимое число элементов:

 

2. Определение надежности n элементов системы из условия, чтобы ВО не превышала заданную .

Из условия Qin(t) Qс(t), находим ВО I и ВБР Pi(t) 1 - Qi(t).

Надежность систем с ограничением по нагрузке

Для некоторых систем условия работы таковы, что для работоспособности системы необходимо, чтобы по меньшей мере r элементов из n были работоспособны.

Т. е. число необходимых рабочих элементов – r, резервных – (n - r).



Отказ системы наступает при условии отказа (n – r + 1) элементов.

Если при изменении числа находящихся в работе элементов не наблюдается перегрузки, влияющей на возможность возникновения отказа, то отказы можно считать независимыми.

ВБР такой системы определяется с помощью биномиального распределения.

Для системы, сохраняющей работоспособность при функционировании r из n элементов, ВБР определяется как сумма r, (r + 1), … , (n – r) элементов:

 

где

Для идентичных элементов с экспоненциальной наработкой Pi(t) = exp(- i t), i = const ( 1 = … = i = … = n) ВБР:

Зависимость надежности системы от кратности резервирования

 

При целой кратности k (r = 1, n = k + 1) для системы с идентичными элементами и экспоненциальной наработкой до отказа:

· ВБР системы:

 

Pс(t) = 1 – (1 - exp(- t))k+1;

 

· ПРО системы:

 

fс(t) = - dPс(t)/ dt = (k + 1) (1 - exp(- t))k exp(- t);

 

· ИО системы:

 

Полагая элементы системы высоконадежными, т. е. t << 1 (P(t) 1 - t), получены упрощенные выражения:

 

· ВБР системы:

Pс(t) 1 – ( t))k+1;

· ПРО системы:

fс(t) (k + 1) k+1 tk;

· ИО системы:

но поскольку t << 1, то ( t)k+1 0, поэтому ИО системы:

с (t) (k + 1) k+1 tk = n · n · tn-1,

где n = k + 1.

Полученное выражение с (t) свидетельствует о том, что при = const элементов, ИО системы зависит от наработки, т. е. распределение наработки до отказа системы не подчиняется экспоненциальному распределению.

На рис. 1 приведены зависимости изменения Pс( t) и с / ( t) из которых следует, что:

· увеличение кратности резервирования k повышает надежность (Pс возрастает, с / 0);

· резервирование наиболее эффективно на начальном участке работы системы (при t T0), т. е.

Рис. 10.1

Из графика с / ( t) видно, что при t = (3 4)T0 = (3 4) 1/ , с приближается к .

Поскольку средняя наработка до отказа системы при идентичных элементах ( = const):

то выигрыш в средней наработке T снижается по мере увеличения кратности резервирования.

Например,

при k = 1

T = T0 ·(1 + 1/2) = 3/2T0

(увеличение Tна 50%);

при k = 2

T= T0 ·(1 + 1/2 + 1/3) = 11/6T0

(увеличение Tна 83%);

при k = 3

T= 25/12T0

(увеличение Tна 108%).

Таким образом, динамика роста T составляет: 50, 33 и 25%, т. е. уменьшается.

 

 

Контрольные вопросы:

1. Чем отличаются системы с нагруженным резервированием с целой и дробной кратностью? Привести расчетные выражения показателей безотказности?

2. Какой закон распределения наработки до отказа будет у системы с нагруженным резервированием, если законы распределения наработки до отказа составляющих ее элементов – экспоненциальные?

3. Какие задачи оптимизации решаются и в чем они состоят для систем с нагруженным резервом?

4. Как определяется вероятность безотказной работы системы с нагруженным резервированием и дробной кратностью?



5. При каких условиях наиболее эффективно применение нагруженного резервирования?








Date: 2015-08-06; view: 73; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.013 sec.) - Пожаловаться на публикацию