Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Классическое определение вероятности





 

o Бесконечное множество называется счетным, если элементы этого множества можно занумеровать числами натурального ряда (натуральными числами).

Все другие бесконечные множества называются несчетными. Примером несчетного множества может служить [а,b], счетного N.

o Пространство элементарных исходов называется дискретным, если оно конечно или счетно, т.е. или .

Любому элементарному исходу ставится в соответствие число , так что при этом . Т.е.

o Вероятностью события А называется число .

Пример. Бросаем игральную кость —дискретное пространство элементарных исходов. . Р (выпадает нечетное количество очков)=

Сделаем следующие предположения:

1. Пространство элементарных исходов —конечно.

2. Все элементарные исходы равновозможны (равновероятны), т.е. . Тогда получим , т.к. слагаемые равны, то имеем , т.е. , где . Рассмотрим некоторые события , где k≤n. Вероятность события А.

o Если пространство элементарных исходов конечно, а все элементарные исходы равновероятны, то вероятностью события А называется отношение числа элементарных исходов, благоприятствующих событию А к общему числу элементарных исходов: .








Date: 2015-07-27; view: 73; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.02 sec.) - Пожаловаться на публикацию