Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Унифицированный язык моделирования UML. Виды диаграмм. Особенности изображения диаграмм





Унифицированный язык моделирования (UML) является стандартным инструментом для создания "чертежей" программного обеспечения. С помощью UML можно визуализировать, специфицировать, конструировать и документировать артефакты программных систем.

UML пригоден для моделирования любых систем: от информационных систем масштаба предприятия до распределенных Web-приложений и даже встроенных систем реального времени. Это очень выразительный язык, позволяющий рассмотреть систему со всех точек зрения, имеющих отношение к ее разработке и последующему развертыванию.

 

Язык UML

UML - это язык для визуализации, специфицирования, конструирования и документирования артефактов программных систем.

Язык состоит из словаря и правил, позволяющих комбинировать входящие в него слова и получать осмысленные конструкции. В языке моделирования словарь и правила ориентированы на концептуальное и физическое представление системы. Язык моделирования, подобный UML, является стандартным средством для составления "чертежей" программного обеспечения.

Моделирование необходимо для понимания системы. При этом единственной модели никогда не бывает достаточно. Напротив, для понимания любой нетривиальной системы приходится разрабатывать большое количество взаимосвязанных моделей. В применении к программным системам это означает, что необходим язык, с помощью которого можно с различных точек зрения описать представления архитектуры системы на протяжении цикла ее разработки

Словарь и правила такого языка, как UML, объясняют, как создавать и читать хорошо определенные модели, но ничего не сообщают о том, какие модели и в каких случаях нужно создавать. Это задача всего процесса разработки программного обеспечения. Хорошо организованный процесс должен подсказать, какие требуются артефакты, какие ресурсы необходимы для их создания, как можно использовать эти артефакты, чтобы оценить выполненную работу и управлять проектом в целом.

UML - это язык визуализации.

Написание моделей на UML преследует одну простую цель — облегчение процесса передачи информации о системе: явная модель облегчает общение.

Некоторые особенности системы лучше всего моделировать в виде текста, другие - графически. На самом деле во всех интересных системах существуют структуры, которые невозможно представить с помощью одного лишь языка программирования. UML - графический язык, что позволяет решить вторую из обозначенных проблем.

UML - это не просто набор графических символов. За каждым из них стоит хорошо определенная семантика. Это значит, что модель, написанная одним разработчиком, может быть однозначно интерпретирована другим - или даже инструментальной программой.

UML - это язык специфицирования

В данном контексте специфицирование означает построение точных, недвусмысленных и полных моделей. UML позволяет специфицировать все существенные решения, касающиеся анализа, проектирования и реализации, которые должны приниматься в процессе разработки и развертывания системы программного обеспечения.

UML - это язык конструирования

UML не является языком визуального программирования, но модели, созданные с его помощью, могут быть непосредственно переведены на различные языки программирования. Иными словами, UML-модель можно отобразить на такие языки, как Java, C++, Visual Basic, и даже на таблицы реляционной базы данных или устойчивые объекты объектно-ориентированной базы данных. Те понятия, которые предпочтительно передавать графически, так и представляются в UML; те же, которые лучше описывать в текстовом виде, выражаются с помощью языка программирования.

Такое отображение модели на язык программирования позволяет осуществлять прямое проектирование: генерацию кода из модели UML в какой-то конкретный язык. Можно решить и обратную задачу: реконструировать модель по имеющейся реализации. Обратное проектирование не представляет собой ничего необычного. Если вы не закодировали информацию в реализации, то эта информация теряется при прямом переходе от моделей к коду. Поэтому для обратного проектирования необходимы как инструментальные средства, так и вмешательство человека. Сочетание прямой генерации кода и обратного проектирования позволяет работать как в графическом, так и в текстовом представлении, если инструментальные программы обеспечивают согласованность между обоими представлениями.

Помимо прямого отображения в языки программирования UML в силу своей выразительности и однозначности позволяет непосредственно исполнять модели, имитировать поведение систем и контролировать действующие системы.

UML - это язык документирования

Компания, выпускающая программные средства, помимо исполняемого кода производит и другие артефакты, в том числе следующие:

требования к системе;

архитектуру;

проект;

исходный код;

проектные планы;

тесты;

прототипы;

версии, и др.

В зависимости от принятой методики разработки выполнение одних работ производится более формально, чем других.

Упомянутые артефакты - это не просто поставляемые составные части проекта; они необходимы для управления, для оценки результата, а также в качестве средства общения между членами коллектива во время разработки системы и после ее развертывания.

UML позволяет решить проблему документирования системной архитектуры и всех ее деталей, предлагает язык для формулирования требований к системе и определения тестов.

 

Где используется UML

Язык UML предназначен прежде всего для разработки программных систем. Его использование особенно эффективно в следующих областях:

информационные системы масштаба предприятия;

банковские и финансовые услуги;

телекоммуникации;

транспорт;

оборонная промышленность, авиация и космонавтика;

розничная торговля;

медицинская электроника;

наука;

распределенные Web-системы.

 

Преимущества UML

UML объектно-ориентированный, в результате чего методы описания результатов анализа и проектирования семантически близки к методам программирования на современных ОО-языках;

UML позволяет описать систему практически со всех возможных точек зрения и разные аспекты поведения системы;

Диаграммы UML сравнительно просты для чтения после достаточно быстрого ознакомления с его синтаксисом;

UML расширяет и позволяет вводить собственные текстовые и графические стереотипы, что способствует его применению не только в сфере программной инженерии;

UML получил широкое распространение и динамично развивается.

 

Строительные блоки UML

Словарь языка UML включает три вида строительных блоков:

сущности;

отношения;

диаграммы.

Сущности - это абстракции, являющиеся основными элементами модели. Отношения связывают различные сущности; диаграммы группируют представляющие интерес совокупности сущностей.

Обобщение (Generalization) - это отношение "специализация/обобщение", при котором объект специализированного элемента (потомок) может быть подставлен вместо объекта обобщенного элемента (родителя или предка).

 

Рис. 8.1. Обобщения

 

Отношения реализации встречаются в двух случаях: во-первых, между интерфейсами и реализующими их классами или компонентами, а во-вторых, между прецедентами и реализующими их кооперациями. Отношение реализации изображается в виде пунктирной линии с незакрашенной стрелкой, как нечто среднее между отношениями обобщения и зависимости (см. рис.8.2).

Диаграмма в UML - это графическое представление набора элементов, изображаемое чаще всего в виде связанного графа с вершинами (сущностями) и ребрами (отношениями). Диаграммы рисуют для визуализации системы с разных точек зрения. Диаграмма - в некотором смысле одна из проекций системы. Как правило, за исключением наиболее тривиальных случаев, диаграммы дают свернутое представление элементов, из которых составлена система. Один и тот же элемент может присутствовать во всех диаграммах, или только в нескольких (самый распространенный вариант), или не присутствовать ни в одной (очень редко). Теоретически диаграммы могут содержать любые комбинации сущностей и отношений. На практике, однако, применяется сравнительно небольшое количество типовых комбинаций, соответствующих пяти наиболее употребительным видам, которые составляют архитектуру программной системы (см. следующий раздел).

 

Рис. 8.2. Реализации

 

Таким образом, в UML выделяют девять типов диаграмм:

диаграммы классов;

диаграммы объектов;

диаграммы прецедентов;

диаграммы последовательностей;

диаграммы кооперации;

диаграммы состояний;

диаграммы действий;

диаграммы компонентов;

диаграммы развертывания.

 

Правила языка UML

Строительные блоки UML нельзя произвольно объединять друг с другом. Как и любой другой язык, UML характеризуется набором правил, определяющих, как должна выглядеть хорошо оформленная модель, то есть семантически самосогласованная и находящаяся в гармонии со всеми моделями, которые с нею связаны.

В языке UML имеются семантические правила, позволяющие корректно и однозначно определять:

имена, которые можно давать сущностям, отношениям и диаграммам;

область действия (контекст, в котором имя имеет некоторое значение);

видимость (когда имена видимы и могут использоваться другими элементами);

целостность (как элементы должны правильно и согласованно соотноситься друг с другом);

выполнение (что значит выполнить или имитировать некоторую динамическую модель).

Модели, создаваемые в процессе разработки программных систем, эволюционируют со временем и могут неоднозначно рассматриваться разными участниками проекта в разное время. По этой причине создаются не только хорошо оформленные модели, но и такие, которые:

содержат скрытые элементы (ряд элементов не показывают, чтобы упростить восприятие);

неполные (отдельные элементы пропущены);

несогласованные (целостность модели не гарантируется).

 

Диаграммы классов

Диаграмма классов (class diagram) служит для представления статической структуры модели системы в терминологии классов объектно-ориентированного программирования. Диаграмма классов может отражать, в частности, различные взаимосвязи между отдельными сущностями предметной области, такими как объекты и подсистемы, а также описывает их внутреннюю структуру и типы отношений. На данной диаграмме не указывается информация о временных аспектах функционирования системы.

Диаграмма классов может также содержать интерфейсы, пакеты, отношения и даже отдельные экземпляры, такие как объекты и связи. Поэтому диаграмму классов принято считать графическим представленном таких структурных взаимосвязей логической модели системы, которые не зависят или инвариантны от времени. Диаграмма классов состоит из множества элементов, которые в совокупности отражают декларативные знания о предметной области. Эти знания интерпретируются в базовых понятиях языка UML, таких как классы, интерфейсы и отношения между ними и их составляющими компонентами. При этом отдельные компоненты этой диаграммы могут образовывать пакеты для представления более общей модели системы. Класс (class) в языке UML служит для обозначения множества объектов, которые обладают одинаковой структурой, поведением и отношениями с объектами из других классов. Графически класс изображается в виде прямоугольника, который дополнительно может быть разделен горизонтальными линиями на разделы или секции (рис.8.3). В этих разделах могут указываться имя класса, атрибуты (переменные) и операции (методы).

Рис.8.3. Графическое изображение класса на диаграмме классов

 

Обязательным элементов обозначения класса является его имя. На начальных этапах разработки диаграммы отдельные классы могут обозначаться простым прямоугольником с указанием только имени соответствующего класса (рис.8.3, а). По мере проработки отдельных компонентов диаграммы описания классов дополняются атрибутами (рис.8.3, б) и операциями (рис.8.3, в).

Предполагается, что окончательный вариант диаграммы содержит наиболее полное описание классов, которые состоят из трех разделов или секций.

 

Даже если секция атрибутов и операций является пустой, в обозначении класса она выделяется горизонтальной линией, чтобы сразу отличить класс от других элементов языка UML. В первом случае для класса "Прямоугольник" (рис.8.4, а) указаны только его атрибуты - точки на координатной плоскости, которые определяют его расположение. Для класса "Окно" (рис.8.4, б) указаны только его операции, секция атрибутов оставлена пустой. Для класса "Счет" (рис.8.4, в) дополнительно изображена четвертая секция, в которой указано исключение - отказ от обработки просроченной кредитной карточки.

 

Рис. 8.4. Примеры графического изображения классов на диаграмме

 

Таким образом, язык UML представляет собой общецелевой язык визуального моделирования, который разработан для спецификации, визуализации, проектирования и документирования компонентов программного обеспечения, бизнес-процессов и других систем. Язык UML одновременно является простым и мощным средством моделирования, который может быть эффективно использован для построения концептуальных, логических и графических моделей сложных систем самого различного целевого назначения. Этот язык вобрал в себя наилучшие качества методов программной инженерии, которые с успехом использовались на протяжении последних лет при моделировании больших и сложных систем

 

2. Современные технологии разработки программных систем: методология объектно-ориен-тированного программирования, методология объектно-ориентированного анализа и проектирования.

Методология объектно-ориентированного программирования

Увеличение размеров программ приводило к необходимости привлечения большего числа программистов, что, в свою очередь, потребовало дополнительных ресурсов для организации их согласованной работы. В процессе разработки приложений заказчик зачастую изменял функциональные требования, что еще более усложняло процесс создания программного обеспечения.

Но не менее важными оказались качественные изменения, связанные со смещением акцента использования компьютеров. В эпоху "больших машин" основными потребителями программного обеспечения были такие крупные заказчики, как большие производственные предприятия, финансовые компании, государственные учреждения. Стоимость таких вычислительных устройств для небольших предприятий и организаций была слишком высока.

Как показала практика, традиционные методы процедурного программирования не способны справиться ни с нарастающей сложностью программ и их разработки, ни с необходимостью повышения их надежности. Во второй половине 80-х годов возникла настоятельная потребность в новой методологии программирования, которая была бы способна решить весь этот комплекс проблем. Ею стало объектно-ориентированное программирование (ООП).

После составления технического задания начинается этап проектирования, или дизайна, будущей системы. Объектно-ориентированный подход к проектированию основан на представлении предметной области задачи в виде множества моделей для независимой от языка разработки программной системы на основе ее прагматики.

Прагматика определяется целью разработки программной системы, например, обслуживание клиентов банка, управление работой аэропорта. В формулировке цели участвуют предметы и понятия реального мира, имеющие отношение к создаваемой системе

При объектно-ориентированном подходе эти предметы и понятия заменяются моделями, т.е. определенными формальными конструкциями.


Рис. 2.2. Семантика (смысл программы с точки зрения выполняющего ее компьютера) и прагматика (смысл программы с точки зрения ее пользователей) [3].

Модель содержит не все признаки и свойства представляемого ею предмета или понятия, а только те, которые существенны для разрабатываемой программной системы. Таким образом, модель "беднее", а следовательно, проще представляемого ею предмета или понятия.

Простота модели по отношению к реальному предмету позволяет сделать ее формальной. Благодаря такому характеру моделей при разработке можно четко выделить все зависимости и операции над ними в создаваемой программной системе. Это упрощает как разработку и изучение (анализ) моделей, так и их реализацию на компьютере.

Объектно-ориентированный подход обладает такими преимуществами, как:

уменьшение сложности программного обеспечения;

повышение надежности программного обеспечения;

обеспечение возможности модификации отдельных компонентов программного обеспечения без изменения остальных его компонентов;

обеспечение возможности повторного использования отдельных компонентов программного обеспечения.

основные понятия и положения ООП.

Систематическое применение объектно-ориентированного подхода позволяет разрабатывать хорошо структурированные, надежные в эксплуатации, достаточно просто модифицируемые программные системы. Этим объясняется интерес программистов к объектно-ориентированному подходу и объектно-ориентированным языкам программирования. ООП является одним из наиболее интенсивно развивающихся направлений теоретического и прикладного программирования.

Объекты

По определению будем называть объектом понятие, абстракцию или любой предмет с четко очерченными границами, имеющий смысл в контексте рассматриваемой прикладной проблемы. Введение объектов преследует две цели:

понимание прикладной задачи (проблемы);

введение основы для реализации на компьютере.

Каждый объект имеет определенное время жизни. В процессе выполнения программы, или функционирования какой-либо реальной системы, могут создаваться новые объекты и уничтожаться уже существующие.

Гради Буч дает следующее определение объекта:

Объект - это мыслимая или реальная сущность, обладающая характерным поведением и отличительными характеристиками и являющаяся важной в предметной области Каждый объект имеет состояние, обладает четко определенным поведением и уникальной идентичностью.

Состояние

Рассмотрим пример. Любой человек может находиться в некотором положении (состоянии): стоять, сидеть, лежать, и - в то же время совершать какие-либо действия.

Например, человек может прыгать, если он стоит, и не может - если он лежит, для этого ему потребуется сначала встать. Также в объектно-ориентированном программировании состояние объекта может определяться наличием или отсутствием связей между моделируемым объектом и другими объектами. Более подробно все возможные связи между объектами будут рассмотрены в разделе "Типы отношений между классами ".

Например, если у человека есть удочка (у него есть связь с объектом "Удочка"), он может ловить рыбу, а если удочки нет, то такое действие невозможно. Из этих примеров видно, что набор действий, которые может совершать человек, зависит от параметров объекта, его моделирующего.

Для рассмотренных выше примеров такими характеристиками, или атрибутами, объекта "Человек" являются:

текущее положение человека (стоит, сидит, лежит);

наличие удочки (есть или нет).

В конкретной задаче могут появиться и другие свойства, например, физическое состояние, здоровье (больной человек обычно не прыгает).

Состояние (state) - совокупный результат поведения объекта: одно из стабильных условий, в которых объект может существовать, охарактеризованных количественно; в любой момент времени состояние объекта включает в себя перечень (обычно статический) свойств объекта и текущие значения (обычно динамические) этих свойств [2].

Поведение

Для каждого объекта существует определенный набор действий, которые с ним можно произвести. Например, возможные действия с некоторым файлом операционной системы ПК:

создать;

открыть;

читать из файла;

писать в файл;

закрыть;

удалить.

Результат выполнения действий зависит от состояния объекта на момент совершения действия, т.е. нельзя, например, удалить файл, если он открыт кем-либо (заблокирован). В то же время действия могут менять внутреннее состояние объекта - при открытии или закрытии файла свойство "открыт" принимает значения "да" или "нет", соответственно.

Программа, написанная с использованием ООП, обычно состоит из множества объектов, и все эти объекты взаимодействуют между собой. Обычно говорят, что взаимодействие между объектами в программе происходит посредством передачи сообщений между ними.

В терминологии объектно-ориентированного подхода понятия "действие", "сообщение" и "метод" являются синонимами. Т.е. выражения "выполнить действие над объектом ", "вызвать метод объекта " и "послать сообщение объекту для выполнения какого-либо действия" эквивалентны. Последняя фраза появилась из следующей модели. Программу, построенную по технологии ООП, можно представить себе как виртуальное пространство, заполненное объектами, которые условно "живут" некоторой жизнью. Их активность проявляется в том, что они вызывают друг у друга методы, или посылают друг другу сообщения. Внешний интерфейс объекта, или набор его методов,- это описание того, какие сообщения он может принимать.

Поведение (behavior) - действия и реакции объекта, выраженные в терминах передачи сообщений и изменения состояния; видимая извне и воспроизводимая активность объекта.

Уникальность

Уникальность - это то, что отличает объект от других объектов. Например, у вас может быть несколько одинаковых монет. Даже если абсолютно все их свойства (атрибуты) одинаковы (год выпуска, номинал и т.д.) и при этом вы можете использовать их независимо друг от друга, они по-прежнему остаются разными монетами.

В машинном представлении под параметром уникальности объекта чаще всего понимается адрес размещения объекта в памяти.

Identity (уникальность) объекта состоит в том, что всегда можно определить, указывают две ссылки на один и тот же объект или на разные объекты. При этом два объекта могут во всем быть похожими, их образ в памяти может представляться одинаковыми последовательностями байтов, но, тем не менее, их Identity может быть различна.

Наиболее распространенной ошибкой является понимание уникальности как имени ссылки на объект. Это неверно, т.к. на один объект может указывать несколько ссылок, и ссылки могут менять свои значения (ссылаться на другие объекты).

Итак, уникальность (identity) - свойство объекта; то, что отличает его от других объектов (автор не согласен с переводом русского издания [2], поэтому здесь приводится авторский перевод).

Классы

Совокупность атрибутов и их значений характеризует объект. Наряду с термином " атрибут " часто используют термины "свойство" и " поле ", которые в объектно-ориентированном программировании являются синонимами.

Все объекты одного и того же класса описываются одинаковыми наборами атрибутов. Однако объединение объектов в классы определяется не наборами атрибутов, а семантикой.

Формально класс - это шаблон поведения объектов определенного типа с заданными параметрами, определяющими состояние. Все экземпляры одного класса (объекты, порожденные от одного класса) имеют один и тот же набор свойств и общее поведение, то есть одинаково реагируют на одинаковые сообщения.

Каждый класс также может иметь специальные методы, которые автоматически вызываются при создании и уничтожении объектов этого класса:

конструктор (constructor) - выполняется при создании объектов;

деструктор (destructor) - выполняется при уничтожении объектов.

Обычно конструктор и деструктор имеют специальный синтаксис, который может отличаться от синтаксиса, используемого для написания обычных методов класса.

Инкапсуляция

Инкапсуляция (encapsulation) - это сокрытие реализации класса и отделение его внутреннего представления от внешнего (интерфейса). При использовании объектно-ориентированного подхода не принято применять прямой доступ к свойствам какого-либо класса из методов других классов. Для доступа к свойствам класса принято задействовать специальные методы этого класса для получения и изменения его свойств.

Внутри объекта данные и методы могут обладать различной степенью открытости (или доступности).

Открытые члены класса составляют внешний интерфейс объекта. Это та функциональность, которая доступна другим классам. Закрытыми обычно объявляются все свойства класса, а также вспомогательные методы, которые являются деталями реализации и от которых не должны зависеть другие части системы.

Благодаря сокрытию реализации за внешним интерфейсом класса можно менять внутреннюю логику отдельного класса, не меняя код остальных компонентов системы. Это свойство называется модульность.

Обеспечение доступа к свойствам класса только через его методы также дает ряд преимуществ. Во-первых, так гораздо проще контролировать корректные значения полей, ведь прямое обращение к свойствам отслеживать невозможно, а значит, им могут присвоить некорректные значения.

Во-вторых, не составит труда изменить способ хранения данных. Если информация станет храниться не в памяти, а в долговременном хранилище, таком как файловая система или база данных, потребуется изменить лишь ряд методов одного класса, а не вводить эту функциональность во все части системы.

Наконец, программный код, написанный с использованием данного принципа, легче отлаживать. Для того чтобы узнать, кто и когда изменил свойство интересующего нас объекта, достаточно добавить вывод отладочной информации в тот метод объекта, посредством которого осуществляется доступ к свойству этого объекта. При использовании прямого доступа к свойствам объектов программисту пришлось бы добавлять вывод отладочной информации во все участки кода, где используется интересующий нас объект.

Наследование

Наследование (inheritance) - это отношение между классами, при котором класс использует структуру или поведение другого класса (одиночное наследование), или других (множественное наследование) классов. Наследование вводит иерархию "общее/частное", в которой подкласс наследует от одного или нескольких более общих суперклассов. Подклассы обычно дополняют или переопределяют унаследованную структуру и поведение.

 

Использование наследования способствует уменьшению количества кода, созданного для описания схожих сущностей, а также способствует написанию более эффективного и гибкого кода.

Не все объектно-ориентированные языки программирования содержат языковые конструкции для описания множественного наследования.

Полиморфизм

Полиморфизм является одним из фундаментальных понятий в объектно-ориентированном программировании наряду с наследованием и инкапсуляцией. Слово " полиморфизм " греческого происхождения и означает "имеющий много форм".

Полиморфизм (polymorphism) - положение теории типов, согласно которому имена (например, переменных) могут обозначать объекты разных (но имеющих общего родителя) классов. Следовательно, любой объект, обозначаемый полиморфным именем, может по-своему реагировать на некий общий набор операций.

В процедурном программировании тоже существует понятие полиморфизма, которое отличается от рассмотренного механизма в ООП. Процедурный полиморфизм предполагает возможность создания нескольких процедур или функций с одним и тем же именем, но разным количеством или различными типами передаваемых параметров. Такие одноименные функции называются перегруженными, а само явление - перегрузкой (overloading). Перегрузка функций существует и в ООП и называется перегрузкой методов.

Типы отношений между классами

Как правило, любая программа, написанная на объектно-ориентированном языке, представляет собой некоторый набор связанных между собой классов. Можно провести аналогию между написанием программы и строительством дома. Подобно тому, как стена складывается из кирпичей, компьютерная программа с использованием ООП строится из классов. Причем эти классы должны иметь представление друг о друге, для того чтобы сообща выполнять поставленную задачу.

Возможны следующие связи между классами в рамках объектной модели (приводятся лишь наиболее простые и часто используемые виды связей, подробное их рассмотрение выходит за рамки этой ознакомительной лекции):

агрегация (Aggregation);

ассоциация (Association);

наследование (Inheritance);

метаклассы (Metaclass).

Агрегация

Отношение между классами типа "содержит" (contain) или "состоит из" называется агрегацией, или включением. Например, если аквариум наполнен водой и в нем плавают рыбки, то можно сказать, что аквариум агрегирует в себе воду и рыбок.

Ассоциация

Если объекты одного класса ссылаются на один или более объектов другого класса, но ни в ту, ни в другую сторону отношение между объектами не носит характера "владения", или контейнеризации, такое отношение называют ассоциацией (association).

Наследование

Наследование является важным случаем отношений между двумя или более классами. Подробно оно рассматривалось выше.

Метаклассы

Итак, любой объект имеет структуру, состоящую из полей и методов. Объекты, имеющие одинаковую структуру и семантику, описываются одним классом, который и является, по сути, определением структуры объектов, порожденных от него.

В свою очередь, каждый класс, или описание, всегда имеет строгий шаблон, задаваемый языком программирования или выбранной объектной моделью. Он определяет, например, допустимо ли множественное наследование, какие существуют ограничения на именование классов, как описываются поля и методы, набор существующих типов данных и многое другое. Таким образом, класс можно рассматривать как объект, у которого есть свойства (имя, список полей и их типы, список методов, список аргументов для каждого метода и т.д.). Также класс может обладать поведением, то есть поддерживать методы. А раз для любого объекта существует шаблон, описывающий свойства и поведение этого объекта, значит, его можно определить и для класса. Такой шаблон, задающий различные классы, называется метаклассом.

Достоинства ООП

Классы позволяют проводить конструирование из полезных компонентов, обладающих простыми инструментами, что позволяет абстрагироваться от деталей реализации.

Данные и операции над ними образуют определенную сущность, и они не разносятся по всей программе, как нередко бывает в случае процедурного программирования, а описываются вместе. Локализация кода и данных улучшает наглядность и удобство сопровождения программного обеспечения.

Инкапсуляция позволяет привнести свойство модульности, что облегчает распараллеливание выполнения задачи между несколькими исполнителями и обновление версий отдельных компонентов.

ООП дает возможность создавать расширяемые системы. Это одно из основных достоинств ООП, и именно оно отличает данный подход от традиционных методов программирования. Расширяемость означает, что существующую систему можно заставить работать с новыми компонентами, причем без внесения в нее каких-либо изменений. Компоненты могут быть добавлены на этапе исполнения программы.

Полиморфизм оказывается полезным преимущественно в следующих ситуациях.

Обработка разнородных структур данных. Программы могут работать, не различая вида объектов, что существенно упрощает код. Новые виды могут быть добавлены в любой момент.

Изменение поведения во время исполнения. На этапе исполнения один объект может быть заменен другим, что позволяет легко, без изменения кода, адаптировать алгоритм в зависимости от того, какой используется объект.

Реализация работы с наследниками. Алгоритмы можно обобщить настолько, что они уже смогут работать более чем с одним видом объектов.

Создание "каркаса" (framework). Независимые от приложения части предметной области могут быть реализованы в виде набора универсальных классов, или каркаса (framework), и в дальнейшем расширены за счет добавления частей, специфичных для конкретного приложения.

Часто многоразового использования программного обеспечения не удается добиться из-за того, что существующие компоненты уже не отвечают новым требованиям. ООП помогает этого достичь без нарушения работы уже имеющихся компонентов, что позволяет извлечь максимум из многоразового использования компонентов.

Сокращается время на разработку, которое может быть отдано другим задачам.

Компоненты многоразового использования обычно содержат гораздо меньше ошибок, чем вновь разработанные, ведь они уже не раз подвергались проверке.

Когда некий компонент используется сразу несколькими клиентами, улучшения, вносимые в его код, одновременно оказывают положительное влияние и на множество работающих с ним программ.

Если программа опирается на стандартные компоненты, ее структура и пользовательский интерфейс становятся более унифицированными, что облегчает ее понимание и упрощает использование.

Недостатки ООП

Методы, как правило, короче процедур, поскольку они осуществляют только одну операцию над данными, зато их намного больше. В коротких методах легче разобраться, но они неудобны тем, что код для обработки сообщения иногда "размазан" по многим маленьким методам.

Инкапсуляцией данных не следует злоупотреблять. Чем больше логики и данных скрыто в недрах класса, тем сложнее его расширять. Отправной точкой здесь должно быть не то, что клиентам не разрешается знать о тех или иных данных, а то, что клиентам для работы с классом этих данных знать не требуется.

Многие считают, что ООП является неэффективным. Как же обстоит дело в действительности? Мы должны проводить четкую грань между неэффективностью на этапе выполнения, неэффективностью в смысле распределения памяти и неэффективностью, связанной с излишней универсализацией.

Неэффективность на этапе выполнения. В языках типа Smalltalk сообщения интерпретируются во время выполнения программы путем осуществления их поиска в одной или нескольких таблицах и за счет выбора подходящего метода. Конечно, это медленный процесс. И даже при использовании наилучших методов оптимизации Smalltalk-программы в десять раз медленнее оптимизированных C-программ.

Неэффективность в смысле распределения памяти. Динамическое связывание и проверка типа на этапе выполнения требуют по ходу работы информацию о типе объекта. Такая информация хранится в дескрипторе типа и он выделяется один на класс. Каждый объект имеет невидимый указатель на дескриптор типа для своего класса. Таким образом, в объектно-ориентированных программах необходимая дополнительная память выражается в одном указателе для объекта и в одном дескрипторе типа длякласса.

Излишняя универсальность. Неэффективность также может означать, что в программе реализованы избыточные возможности. В библиотечном классе часто содержится больше методов, чем это реально необходимо. А поскольку лишние методы не могут быть удалены, они становятся мертвым грузом. Это не влияет на время выполнения, но сказывается на размере кода.

Одно из возможных решений - строить базовый класс с минимальным числом методов, а затем уже реализовывать различные расширения этого класса, которые позволят нарастить функциональность. Другой подход - дать компоновщику возможность удалять лишние методы. Такие интеллектуальные компоновщики уже существуют для различных языков и операционных систем.

Но нельзя утверждать, что ООП неэффективно. Если классы используются лишь там, где это действительно необходимо, то потеря эффективности из-за повышенного расхода памяти и меньшей производительности незначительна. Кроме того, надежностьпрограммного обеспечения и быстрота его написания часто бывает важнее, чем производительность.

Методология объектно-ориентированного анализа и проектирования

Необходимость анализа предметной области до начала написания программы была осознана при разработке масштабных проектов. Процесс создания баз данных существенно отличается от написания программного кода для решения вычислительной задачи. Так, при проектировании базы данных возникает необходимость в предварительной разработке концептуальной схемы или модели, которая отражала бы общие взаимосвязи предметной области и особенности организации соответствующей информации.

Предметная область (domain) - часть реального мира, которая имеет существенное значение или непосредственное отношение к процессу функционирования программы. Другими словами, предметная область включает в себя только те объекты и взаимосвязи между ними, которые необходимы для описания требований и условий решения конкретной задачи.

Выделение исходных или базовых компонентов предметной области, требуемых для решения той или иной задачи, представляет, в общем случае, нетривиальную проблему. Сложность данной проблемы проявляется в неформальном характере процедур или правил, которые можно применять для этой цели. Более того, эта работа должна выполняться совместно со специалистами или экспертами, хорошо знающими предметную область. Сложность моделирования предметной области и разработки корпоративных информационных систем привело к появлению новой методологии объектно-ориентированный анализ и проектирование.

Объектно-ориентированный анализ и проектирование (ООАП, Object-Oriented Analysis /Design) - технология разработки программных систем, в основу которых положена объектно-ориентированная методология представления предметной области в виде объектов, являющихся экземплярами соответствующих классов.

Методология ООАП тесно связана с концепцией автоматизированной разработки программного обеспечения (Computer Aided Software Engineering, CASE). К первым CASE -средствам отнеслись с определенной настороженностью. Со временем появились как восторженные отзывы об их применении, так и критические оценки их возможностей. Причин для столь противоречивых мнений было несколько. Первая из них заключается в том, что ранние CASE -средства были простой надстройкой над системой управления базами данных (СУБД). Визуализация процесса разработки концептуальной схемы БД имеет немаловажное значение, тем не менее, она не решает проблем создания приложений других типов.

Вторая причина связана с графической нотацией, реализованной в CASE -средстве. Если языки программирования имеют строгий синтаксис, то попытки предложить подходящий синтаксис для визуального представления концептуальных схем БД, были восприняты далеко не однозначно. На этом фоне разработка и стандартизация унифицированного языка моделирования UML вызвала воодушевление у всего сообщества корпоративных программистов.

В рамках ООАП исторически рассматривались три графических нотации:

диаграммы "сущность-связь" (Entity-Relationship Diagrams, ERD),

диаграммы функционального моделирования (Structured Analysis and Design Technique, SADT),

диаграммы потоков данных (Data Flow Diagrams, DFD).

Диаграммы "сущность- связь " (ERD) предназначены для графического представления моделей данных разрабатываемой программной системы и предлагают набор стандартных обозначений для определения данных и отношений между ними. С помощью этого вида диаграмм можно описать отдельные компоненты концептуальной модели данных и совокупность взаимосвязей между ними.

 

3. Этапы развития технологии программирования: процедурное программирование, структурное программирование, модульное программирование, объектно-ориентированное программирование.

Процедурное программирование — программирование на императивном языке, при котором последовательно выполняемые операторы можно собрать в подпрограммы, то есть более крупные целостные единицы кода, с помощью механизмов самого языка[1].

Процедурное программирование является отражением архитектуры традиционных ЭВМ, которая была предложена фон Нейманом в 1940-х годах. Теоретической моделью процедурного программирования служит абстрактная вычислительная система под названием машина Тьюринга.

Date: 2015-07-27; view: 2401; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию