Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Принцип действия стабилизатора напряжения с подмагничиванием трансформатора





Стабилизаторы напряжения с подмагничиванием трансформатора основаны на компенсации изменения напряжения сети путем регулирования коэффициента трансформации за счет местного подмагничивания сердечника автотрансформаторов. Такие автотрасформаторы имеют специально выполненный магнитопровод и систему обмоток. Подмагничивание осуществляется с помощью полупроводникового (тиристорного) регулятора.

 

2) Классификация приборов для измерения уровня.

 

· Механические
Механические уровнемеры бывают поплавковые, с чувствительным элементом (поплавком), плавающим на поверхности жидкости, и буйковые, действие которых основано на измерении выталкивающей силы, действующей на буёк. Перемещение поплавка или буйка через механические связи или систему дистанционной (электрической или пневматической) передачи сообщается измерительной системе прибора. Измерение уровня гидростатическими уровнемерами основано на уравновешивании давления столба жидкости в резервуаре давлением столба жидкости, заполняющей измерительный прибор, или реакцией пружинного механизма прибора.

 

· Поплавковые
Уровнемер поплавковый предназначен для выдачи электрического дискретного сигнала об уровне жидкости и уровне раздела двух несмешивающихся жидкостей в аппаратах и резервуарах технологических установок. В поплавковых уровнемерах имеется плавающий на поверхности жидкости поплавок, в результате чего измеряемый уровень преобразуется в перемещение поплавка. В таких приборах используется легкий поплавок, изготовленный из коррозионно-стойкого материала. Показывающее устройство прибора соединено с поплавком тросом или с помощью рычагов. Поплавковыми уровнемерами можно измерять уровень жидкости в открытых емкостях.

 

· Буйковые
Уровнемеры буйковые - регуляторы буйковые пневматические предназначены для работы в системах автоматического контроля, управления и регулирования параметров производственных технологических процессов с целью выдачи информации в виде стандартного пневматического сигнала об уровне жидкости или границы раздела двух несмешивающихся жидкостей, находящихся под вакуумметрическим, атмосферным или избыточным давлением. В буйковых уровнемерах применяется неподвижный погруженный в жидкость буек. Принцип действия буйковых уровнемеров основан на том, что на погруженный буек действует со стороны жидкости выталкивающая сила. По закону Архимеда эта сила равна весу жидкости, вытесненной буйком. Количество вытесненной жидкости зависит от глубины погружения буйка, то есть от уровня в емкости. Таким образом, в буйковых уровнемерах измеряемый уровень преобразуется в пропорциональную ему выталкивающую силу. Поэтому зависимость выталкивающей силы от измеряемого уровня линейная. В буйковых уровнемерах буек передает усилие на рычаг промежуточного преобразователя. Выходной сигнал первого уровнемера — унифицированный пневматический, второго — унифицированный электрический сигнал (постоянный ток). Принцип действия буйковых уровнемеров позволяет в широких пределах изменять их диапазон измерения. Это достигается как заменой буйка, так и изменением передаточного отношения рычажного механизма промежуточного преобразователя.

 

· Гидростатические
Гидростатический способ измерения уровня основан на том, что в жидкости существует гидростатическое давление, пропорциональное глубине, то есть расстоянию от поверхности жидкости. Поэтому для измерения уровня гидростатическим способом могут быть использованы приборы для измерения давления или перепада давлений. В качестве таких приборов обычно применяют дифференциальные манометры. При включении дифференциального манометра перепад давлений на нем будет равен гидростатическому давлению жидкости, которое пропорционально измеряемому уровню. При измерении уровня агрессивных жидкостей дифференциальный манометр защищается разделительными сосудами или мембранными разделителями, что позволяет заполнить его камеры и трубки неагрессивной жидкостью. При измерении уровня суспензий и шламов, осадки которых могут забивать импульсные трубки дифференциальных манометров, их непрерывно продувают сжатым воздухом. Импульсные трубки все время заполнены продуваемым воздухом. При небольшом расходе воздуха его давление в минусовой камере оказывается равным давлению над жидкостью в емкости, а в плюсовой — давлению в жидкости. Поэтому перепад давлений в дифференциальном манометре будет равен гидростатическому давлению жидкости и, следовательно, пропорционален измеряемому уровню.
Гидростатические уровнемеры - ближайшие родственники датчиков давления. Они дешевы и просты по конструкции, но имеют ограниченное применение из-за относительно низкой точности, сложности применения (монтаж на днище резервуара, требуется постоянная плотность измеряемого объекта, только для спокойных объектов/процессов). Постоянный контакт с измеряемым объектом так же накладывает свои ограничения. Скважинные уровнемеры являются разновидностью гидростатических уровнемеров.

 

· Электрические
Принцип действия электрических уровнемеров основан на различии электрических свойств жидкостей и газов. При этом жидкости, уровень которых измеряется, могут быть как проводниками, так и диэлектриками; газы же, находящиеся в нежидкостном пространстве, всегда диэлектрики. Основным параметром, определяющим электрические свойства проводников, является их электропроводность, а диэлектриков - относительная диэлектрическая проницаемость, показывающая, во сколько раз по сравнению с вакуумом уменьшается в данном веществе сила взаимодействия между электрическими зарядами. В зависимости от того, какой выходной параметр (сопротивление, емкость или индуктивность) первичного преобразователя «реагирует» на изменение уровня, электрические уровнемеры подразделяются на такие виды: кондуктометрические, емкостные и вибрационные.

 


· Ёмкостные
Уровнемер емкостный обеспечивает измерение текущего уровня и сигнализацию двух перестраиваемых предельных уровней воды, молока, пива, щелочи, кислот, нефти и нефтепродуктов, зерна и продуктов его размола, сахара, цемента, песка, извести, а также других жидких и сыпучих сред, в том числе в емкостях, находящихся под избыточным давлением. Работа таких уровнемеров основана на различии диэлектрической проницаемости жидкостей и воздуха. Простейший первичный преобразователь емкостного прибора представляет собой электрод (металлический стержень или провод), расположенный в вертикальной металлической трубке. Стержень вместе с трубой образуют конденсатор. Емкость такого конденсатора зависит от уровня жидкости, так как при его изменении от нуля до максимума диэлектрическая проницаемость будет изменяться от диэлектрической проницаемости воздуха до диэлектрической проницаемости жидкости. Принцип действия уровнемера емкостного следующий: при заполнении или опорожнении резервуара электрическая емкость расположенного в уровнемере чувствительного элемента изменяется пропорционально уровню погружения в контролируемую среду. Это изменение емкости преобразуется электронной схемой в сигнал постоянного тока, который затем используется для местных показаний, для двух установок сигнализации и для передачи на другие устройства.

 

· Кондуктометрические
Действие кондуктометрического уровнемера основано на измерении сопротивления между электродами, помещенными в измеряемую среду (одним из электродов может быть стенка резервуара или аппарата). Кондуктометрические уровнемеры (уровнемеры сопротивления) применяются для измерения уровня проводящих жидкостей (в том числе, и жидких металлов). Первичный преобразователь кондуктометрического уровнемера представляет собой два электрода, глубина погружения которых в жидкость и определяет текущее значение ее уровня. Выходным параметром преобразователя является его сопротивление или проводимость. При измерении уровня „сверхпроводящих" жидкостей (например, жидких металлов) возможно применение кондуктометрических уровнемеров с одним электродом, роль второго электрода при этом выполняет заземленный сосуд.
Основные факторы, ограничивающие точность кондуктометрических уровнемеров — непостоянство площадей поперечных сечений электродов и вследствие этого непостоянство удельных сопротивлений по длине электродов, а также образование на электродах пленки (окисла или соли) с высоким удельным сопротивлением, что приводит к резкому неконтролируемому снижению чувствительности датчика.
Кроме того, на точность кондуктометрических уровнемеров существенное влияние оказывает изменение электропроводности рабочей жидкости, поляризация среды вблизи электродов. Вследствие этого погрешности кондуктометрических методов измерения уровня (даже при использовании различных компенсационных схем) достаточно высоки (5—10 %), поэтому они находят преимущественное применение в качестве сигнализаторов уровня проводящих жидкостей.

 


· Вибрационные Вибрационные сигнализаторы уровня применяются для измерения граничных значений жидкостей. Модульная конструкция приборов позволяет использовать их в емкостях, резервуарах и трубопроводах. Благодаря универсальной и простой измерительной системе, сигнализатор уровня практически не критичен к химическим и физическим свойствам жидкости. Он работает даже при неблагоприятных условиях, таких как турбулентность, пузырьки воздуха. Вибрационные сигнализаторы уровня способны измерять уровень почти всех жидкостей. Вибрирующий элемент приводится в действие пьезоэлектрическим методом и вибрирует с механической резонансной частотой приблизительно 1200 Гц. Пьезоэлементы закреплены механически и не подвергаются воздействию теплового удара. При погружении вибрирующего элемента в измеряемую среду частота изменяется. Это изменение частоты улавливается встроенным генератором и преобразуется в команду на переключение. Вибрационные уровнемеры, как правило, компактны и могут работать без внешней обработки сигнала, имеют встроенный блок электроники, который обрабатывает сигнал уровня и преобразует его (в зависимости от типа встроенного генератора) в соответствующий выходной сигнал. При помощи этого выходного сигнала можно работать с подключенными дополнительными устройствами напрямую (например, системой предупреждающей сигнализации, ПЛК, насосами и т.д.). Вибрационные уровнемеры - это лучшее решение для липких сред.

 


· Акустические (ультразвуковые)
В акустических, или ультразвуковых, уровнемерах используется явление отражения ультразвуковых колебаний от плоскости раздела сред жидкость-газ. Действие уровнемеров этого типа основано на измерении времени прохождения импульса ультразвука от излучателя до поверхности жидкости и обратно. При приеме отраженного импульса излучатель становится датчиком. Если излучатель расположен над жидкостью, уровнемер называется акустическим; если внутри жидкости — ультразвуковым уровнемером. В первом случае измеряемое время будет тем больше, чем ниже уровень жидкости, во втором — наоборот. Электронный блок служит для формирования излучаемых ультразвуковых импульсов, усиления отраженных импульсов, измерения времени прохождения импульсом двойного пути (в воздухе или жидкости) и преобразования этого времени в унифицированный электрический сигнал.
Уровнемеры ультразвуковые предназначены для контроля одного уровня, для контроля двух уровней, или для контроля двух уровней в одном технологическом проеме.
Уровнемер акустический предназначен для бесконтактного автоматического дистанционного измерения уровня жидких сред, в том числе взрывоопасных, агрессивных, вязких, неоднородных, выпадающих в осадок, а также сыпучих материалов с диаметром гранул и кусков от 5 до 300 мм, при температуре контролируемой среды от минус 30 С до плюс 120 С.

 

 

3) Электромагнитные расходомеры: устройство, принцип действия.

 

Для контроля расхода и учета воды и теплоносителя с 40-х годов 20-го века в промышленности применяются электромагнитные расходомеры. Неоспоримые достоинства электромагнитных расходомеров: отсутствие гидродинамического сопротивления, отсутствие подвижных механических элементов, высокая точность, быстродействие – определили их широкое распространение.

Электромагнитный расходомер состоит из двух устройств: детектора, через который протекает измеряемый поток жидкости и в котором генерируются низкочастотные сигналы, пропорциональные интенсивности потока, и преобразователя, который подает генерируемый электрический ток на детектор, усиливает поступающие с детектора сигналы, а затем обрабатывает и преобразует их в сигналы диапазона 4 - 20 мА постоянного тока.

Расходомеры электромагнитные состоят из датчика расхода и пребразователя. Датчик расхода устанавливается непосредственно в трубопровод и представляет собой трубу, выполненную из нержавеющей или углеродистой стали, бесфланцевого исполнения либо фланцевого. На эту трубу устанавливаются две катушки индуктивности (индуктор). При подаче на катушки тока возбуждения от электронного блока преобразователя создается магнитное поле, которое наводит в электропроводной жидкости, движущейся в трубе, ЭДС. Значение ЭДС, пропорциональное скорости движения жидкости, а, значит, и расходу, снимается с двух измерительных электродов, расположенных напротив друг друга в диаметральной плоскости трубы, подается в электронный блок преобразователя, где усиливается и обрабатывается, формируя выходные сигналы расходомера. Внутренняя поверхность трубы футеруется неэлектропроводным материалом.

 

 

4) Огнеопасные работы, общие правила из подготовки и проведения.

 

Сварочные и другие огневые работы, связанные с применением открытого пламени, можно вести лишь с письменного разрешения лиц, ответственных за пожарную безопасность на данном строительстве. К огневым работам допускаются лица, прошедшие противопожарный техминимум и имеющие специальные квалифицированные удостоверения.

Совмещать сварочные работы с работами, связанными с применением горючих жидкостей, не разрешается. Огневые работы следует закончить до устройства сгораемых полов, укладки сгораемой термоизоляции и других работ с применением сгораемых материалов. При выполнении огневых работ на открытой площадке для защиты сгораемых конструкций от искр вокруг рабочих мест устраивают переносные несгораемые ограждения (защитные экраны).

Места огневых работ и установки сварочных агрегатов должны быть очищены от сгораемых материалов в радиусе не менее 5 м, а места установки газовых баллонов и газогенераторов — не менее 10 м. Все рабочие, занятые на огневых работах, должны уметь пользоваться первичными средствами пожаротушения.

При производстве электрогазосварочных работ запрещается: сваривать, резать или паять свежеокрашенные конструкции до полного высыхания на них краски; сваривать, резать, паять или нагревать открытым огнем сосуды, находящиеся под давлением, а также цистерны, баки, резервуары из-под легковоспламеняющихся и горючих жидкостей и газов без предварительной тщательной промывки их и последующей пропарки; одновременно работать электросварщикам и газосварщикам (газорезчикам) внутри закрытых емкостей и помещений. Перевозить, хранить, выдавать и получать газовые баллоны разрешается только лицам, специально обученным обращению сними.

Газовые баллоны предохраняют от ударов и действия прямых солнечных лучей, а также удаляют от отопительных приборов на расстояние не менее 1 м. Их хранят в специальных сухих и проветриваемых помещениях в соответствии с «Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением». По окончании работы баллоны с газами помещают в места, исключающие доступ посторонних лиц, а переносные ацетиленовые генераторы следует освобождать от карбида кальция.

При эксплуатации кислородных баллонов необходимо исключить возможность соприкосновения со смазочными материалами, одеждой и обтирочными материалами, имеющими следы масел. Перемещают газовые баллоны на специальных устройствах, обеспечивающих устойчивое положение баллонов.

 

 

БИЛЕТ 19

 

 

1) Биполярные транзисторы. Конструкция, принцип действия, схемы включений.

 

Биполярный транзистор состоит из трех различным образом легированных полупроводниковых зон: эмиттера E, базы B и коллектора C. В зависимости от типа проводимости этих зон различают NPN (эмиттер − n-полупроводник, база − p-полупроводник, коллектор − n-полупроводник) и PNP транзисторы. К каждой из зон подведены проводящие контакты. База расположена между эмиттером и коллектором и изготовлена из слаболегированного полупроводника, обладающего большим сопротивлением. Общая площадь контакта база-эмиттер значительно меньше площади контакта коллектор-база, поэтому биполярный транзистор общего вида является несимметричным устройством (невозможно путем изменения полярности подключения поменять местами эмиттер и коллектор и получить в результате абсолютно аналогичный исходному биполярный транзистор).

В активном режиме работы транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении (закрыт)

Схема с общим эмиттером (ОЭ). Такая схема изображена на рисунке 1. Во всех книжках написано, что эта схема является наиболее распространненой, т. к. дает наибольшее усиление по мощности. Характеристикой является входное сопротивление Rвх, которое определяется по закону Ома:

Схема с общей базой (ОБ)

Для схемы ОБ фазовый сдвиг между входным и выходным напряжением отсутствует, то есть фаза напряжения при усилении не переворачивается. Кроме того, при усилении схема ОБ вносит гораздо меньшие искажения, нежели схема ОЭ.

 

Схема с общим коллектором (ОК). Схема включения с общим коллектором. Такая схема чаще называется эмиттерным повторителем. В схеме ОК фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным - потому, что выходное напряжение снимается с эмиттера относительно общего провода.

2) Ультразвуковые расходомеры, принцип действия.

 

 

Ультразвуковые расходомеры подразделяются на:

• расходомеры, работающие по принципу перемещения акустических колебаний движущейся средой

• расходомеры, работающие на принципе эффекта Допплера

Наибольшее применение получили расходомеры, сконструированные на принципе измерения разности времени прохождения акустических колебаний по направлению потока и против потока измеряемого вещества. Приборы, в которых акустические колебания проходят перпендикулярно к потоку и измеряется величина отклонения этих колебаний от первоначального направления встречаются редко. Приборы работающие на явлении Допплера, используются для измерения местной скорости потока, реже для измерения расхода вещества и имеют более простые измерительные схемы.

Кроме вышеуказанных разновидностей рсходомеров, разработаны длинноволновые акустические расходомеры, работающие в звуковом диапазоне частот акустических колебаний.

Ультразвуковые расходомеры, как правило, используют для измерения объемного расхода вещества, но при добавлении в конструкцию расходомера реагирующего на плотность измеряемого вещества акустического преобразователя, возможно измерение массового расхода. Погрешность измерения ультразвуковых расходомеров находится пределах от 0,1 до 2,5 %. Чаще всего такие расходомеры используют при измерении расхода жидкости, так как газы имеют низкое акустическое сопротивление и сложность получения интенсивных звуковых колебаний. Ультразвуковые расходомеры применяют для измерения расхода в трубах диаметром 10 мм и больше.

Ультразвуковые расходомеры отличаются по устройству первичных преобразователей и по используемым измерительным схемам. Высокие частоты акустических колебаний (0,1-10 МГц) используются для измерения расхода чистых жидкостей. Для измерения загрязненных сред частоты колебаний значительно уменьшают до нескольких десятков КГц, чтобы предотвратить поглощение и рассеяние акустических колебаний. Длина волны должна быть в разы больше диаметра воздушных пузырей или твердых частиц. Для измерения расхода газов используют низкие частоты.

 

 

3) Понятие класса точности измерительных приборов.

 

Обобщённой характеристикой средств измерения является класс точности, определяемый предельными значениями допускаемых основной и дополнительной погрешностей, а также другими параметрами, влияющими на точность средств измерения; значение параметров установлено стандартами на отдельные виды средств измерений. Класс точности средств измерений характеризует их точностные свойства, но не является непосредственным показателем точности измерений, выполняемых с помощью этих средств, так как точность зависит также от метода измерений и условий их выполнения. Измерительным приборам, пределы допускаемой основной погрешности которых заданы в виде приведённых основных (относительных) погрешностей, присваивают классы точности, выбираемые из ряда следующих чисел: (1; 1,5; 2,0; 2,5; 3,0; 4,0; 5,0; 6,0)*10n, где показатель степени n = 1; 0; −1; −2 и т. д.

 

4) Первичные средства пожаротушения, их хранение и использование

 

Первичные средства пожаротушения - это устройства, инструменты и материалы, предназначенные для локализации и (или) ликвидации загорания на начальной стадии (огнетушители, внутренний пожарный кран, вода, песок, кошма, асбестовое полотно, ведро, лопата и др.). Эти средства всегда должны быть наготове и, как говорится, под рукой.

Вода — наиболее распространенное средство для тушения огня. Огнетушащие свойства ее заключаются главным образом в способности охладить горящий предмет, снизить температуру пламени

Песок и земля с успехом применяются для тушения небольших очагов горения, в том числе проливов горючих жидкостей (керосин, бензин, масла, смолы и др.). Используя песок (землю) для тушения, нужно принести его в ведре или на лопате к месту горения. Насыпая песок главным образом по внешней кромке горящей зоны, старайтесь окружать песком место горения, препятствуя дальнейшему растеканию жидкости

Пожарный шит. Здания и помещения должны быть обеспечены первичными средствами пожаротушения. Для их размещения устанавливают специальные щиты. На щитах размещают огнетушители, ломы, багры, топоры, ведра. Рядом со щитом устанавливается ящик с песком и лопатами, а также бочка с водой 200—250 л

Кошма предназначена для изоляции очага горения от доступа воздуха. Этот метод очень эффективен, но применяется лишь при небольшом очаге горения.

Внутренний пожарный кран предназначен для тушения загораний веществ и материалов, кроме электроустановок под напряжением.

 

БИЛЕТ 20

 

1) Логические элементы ИЛИ, И, НЕ, реализуемые логические функции.

Схема И реализует конъюнкцию (логическое умножение) двух или более логических значений.

Эл. схема  
 
 
 
 
 

 

Таблица истинности
х y х и у
     
     
     
     

Единица на выходе схемы И будет тогда и только тогда, когда на всех входах будут единицы. Когда хотя бы на одном входе будет нуль, на выходе также будет нуль.
Связь между выходом z этой схемы и входами х и у описывается соотношением z = х ^ у (читается как «х и у»).
Операция конъюнкции на функциональных схемах обозначается знаком & (читается как «амперсэнд»), являющимся сокращенной записью английского слова and.

Date: 2015-07-22; view: 536; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию