Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Квантование амплитуды аналогового сигнала





 

Преобразование аналогового сигнала в цифровой поток данных происходит в два этапа. Первый этап это дискретизация сигнала на основе теоремы Найквиста, с использованием oversampling. Второй этап это квантование амплитуды дискретных отсчётов, полученных на первом этапе. Дискрет - столбик или полоска, схожая с той, что на студийном индикаторе уровня сигнала. Длина этой полоски и есть амплитуда сигнала в дискрете.

Процесс квантования амплитуды тогда можно представить как измерение длины полоски с помощью линейки. Чем чаще идут метки на линейке, тем точнее длина полоски (амплитуды) и тем меньше будут ошибки измерений (шумы квантования). Но чем чаще расположены метки на линейки, тем больше бит потребуется для записи числа, соответствующего измеренной длине полоски (амплитуде сигнала в дискрете).

Например, если на линейке 32 метки, то для представления длины полоски (амплитуды) в виде числа понадобится максимум 5 бит (32=25). В данном случае 5 бит и будет разрядностью АЦП. Таким образом, процесс квантования амплитуд дискретов фактически заключается в измерении их величин по отношению к некоторому опорному источнику напряжения (линейка в предыдущих объяснениях), обычно имеющемуся внутри корпуса микросхемы АЦП и выражении этих величин в виде чисел состоящих из конечного числа бит. Причём числа могут быть не только целые, например, 16,18, 20,24-битные, но и 24 или 32 - битные с плавающей точкой или другой кодировкой (например, в кодах с исправлением ошибок), зависящий от конкретной реализации устройства АЦП.

Довольно часто используется всё же кодирование результатов измерения амплитуд дискретов в виде целых чисел в так называемом "дополнительном коде”. В обычном АЦП число бит на один дискрет (разрядность числа) выходного цифрового потока данных непосредственно с квантователя амплитуд дискретов и на выходе всего АЦП равны, так как числа с квантователя амплитуд поступают непосредственно на выход устройства. В случае входного аналогового сигнала, в виде случайного процесса ошибки, процесса квантования, некорелированны с самим сигналом. Отношение сигнал/шум на выходе АЦП в этом случае (если все остальные элементы идеальны) будет 6·N дБ, где N есть число бит на один дискрет или разрядность чисел (для дополнительного кода) сопоставляемых величинам амплитудам дискретов.

Например, для 16-битного АЦП с частотой дискретизации 44,1 кГц в идеальном случае шум квантования будет находиться на уровне 96 дБ по отношению к цифровому синусоидальному сигналу и спектр шума квантования будет равномерен (постоянен) в диапазоне 0 - 22,05 кГц. Если АЦП будет дискретизировать сигнал с большей частотой, то полная мощность шумов квантования останется неизменной, но его спектр будет шире (он будет простираться от 0 Гц до новой, большей частоты дискретизации делённой на 2). Например, если частота дискретизации удваивается до 88.2 кГц, то спектр шумов квантования будет простираться уже до 44,1 кГц (вместо 22,05 кГц). А полезный сигнал будет иметь спектр (как и раньше) простирающийся от 0 Гц до 22,05 кГц, т.е. спектр шума, станет в два раза шире спектра сигнала при прежней мощности шума. Таким образом, мощность шумов квантования "внутри” спектра полезного сигнала упадёт в два раза. Другими словами отношение сигнал/шум квантования в полосе 0 Гц - 22,05 кГц улучшится в два раза (на 3 дБ). Этот процесс можно продолжать. В случае четырехкратного увеличения частоты дискретизации (четырехкратный oversampling) произойдёт улучшение сигнал/шум на 6 дБ. Если использовать 15-битный квантователь на частоте дискретизации 44,1·4 кГц, получится такое же отношение сигнал/шум, как и для 16 битного квантователя и частоты дискретизации 44,1 кГц. Если взять в пределе 1-битного квантователя на частоте дискретизации 44,1· (415) кГц, то получится такое же качество АЦП, как и для 16 битного квантователя на частоте дискретизации 44,1 кГц. С помощью цифровых фильтров подавляются все лишние частотные составляющие в полосе от 22,05 кГц до 44,1· (415) /2 кГц и в полном соответствии с теоремой Найквиста понижают частоту дискретизации до 44,1 кГц.

Таким образом, квантователь АЦП не обязательно должен иметь высокую разрядность, для того чтобы выходной поток цифровых данных АЦП имел частоту дискретизации до 44,1 кГц.

Date: 2015-07-25; view: 703; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию