Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Методы перебора в задачах поиска

Теоретическая часть

Полный перебор (или метод «грубой силы», англ. brute force) — метод решения математических задач. Относится к классу методов поиска решения исчерпыванием всевозможных вариантов. Сложность полного перебора зависит от количества всех возможных решений задачи. Если пространство решений очень велико, то полный перебор может не дать результатов в течение нескольких лет или даже столетий.

Общий смысл задач поиска сводится к следующему: из данной информации, хранящейся в памяти ЭВМ, выбрать нужные сведения, удовлетворяющие определенным условиям (критериям).

Полный перебор является «лобовым» способом поиска и, очевидно, не всегда самым лучшим.

Рассмотрим пример. В одномерном массиве X заданы координаты п точек, лежащих на вещественной числовой оси. Точки пронумерованы. Их номера соответствуют последовательности в массиве X. Определить номер первой точки, наиболее удаленной от начала координат.

Легко понять, что это знакомая нам задача определения номера наибольшего по модулю элемента массива X. Она решается путем полного перебора (см. практическая часть задача 1)

Полный перебор элементов одномерного массива производится с помощью одной циклической структуры.

А теперь такая задача: исходные данные — те же, что и в предыдущей; требуется определить пару точек, расстояние между которыми наибольшее.

Применяя метод перебора, эту задачу можно решать так: перебрать все пары точек из Ладанных и определить номера тех, расстояние между которыми наибольшее (наибольший модуль разности координат). Такой полный перебор реализуется через два вложенных цикла (см. практическая часть задача 2)

Очевидно, что такое решение задачи нерационально. Здесь каждая пара точек будет просматриваться дважды, например при i = 1, j = 2 и i = 2, j= 1. Для случая п = 100 циклы повторят выполнение 100 х 100 = 10000 раз.

Выполнение программы ускорится, если исключить повторения. Исключить также следует и случай совпадения значений i и j.

При n = 100 получается 4950.

Для исключения повторений нужно в предыдущей программе изменить начало внутреннего цикла с 1 на i +1. (см. практическая часть задача 3).

Рассмотренный вариант алгоритма назовем перебором без повторений.

Замечание. Конечно, эту задачу можно было решить и другим способом, но в данном случае нас интересовал именно алгоритм, связанный с перебором. В случае точек, расположенных не на прямой, а на плоскости или в пространстве, поиск альтернативы такому алгоритму становится весьма проблематичным.

А теперь представьте, что из массива Х требуется выбрать все группы чисел, сумма которых равна десяти. В группах может быть от 1 до п чисел. В этом случае количество вариантов перебора резко возрастает, а сам алгоритм становится нетривиальным.

Казалось бы, ну и что? Машина работает быстро! И все же посчитаем. Число различных групп из п объектов (включая пустую) составляет 2n. При п = 100 это будет 2100 ≈ 1030. Компьютер, работающий со скоростью миллиард операций в секунду, будет осуществлять такой перебор приблизительно 10 лет. Даже исключение перестановочных повторений не сделает такой переборный алгоритм практически осуществимым.

Путь практической разрешимости подобных задач состоит в нахождении способов исключения из перебора бесперспективных с точки зрения условия задачи вариантов. Для некоторых задач это удается сделать с помощью алгоритма, описанного в следующем разделе.

Перебор с возвратом. Рассмотрим алгоритм перебора с возвратом на примере задачи о прохождении лабиринта (рис. 1).

Рис.1

Дан лабиринт, оказавшись внутри которого нужно найти выход наружу. Перемещаться можно только в горизонтальном и вертикальном направлениях. На рисунке показаны все варианты путей выхода из центральной точки лабиринта.

Для получения программы решения этой задачи нужно решить две проблемы:

• как организовать данные;

• как построить алгоритм.

Информацию о форме лабиринта будем хранить в квадратной матрице LAB символьного типа размером N x N, где N — нечетное число (чтобы была центральная точка). На профиль лабиринта накладывается сетка так, что в каждой ее ячейке находится либо стена, либо проход.

Матрица отражает заполнение сетки: элементы, соответствующие проходу, равны пробелу, а стене — какому-нибудь символу (например, букве М)

Путь движения по лабиринту будет отмечаться символами +.

Например, приведенный выше рисунок (в середине) соответствует следующему заполнению матрицы LAB:

 

 

Исходные данные — профиль лабиринта (исходная матрица LAB без крестиков); результат — все возможные траектории выхода из центральной точки лабиринта (для каждого пути выводится матрица LAB с траекторией, отмеченной крестиками).

Алгоритм перебора с возвратом еще называют методом проб.

Суть его в следующем:

1. Из каждой очередной точки траектории просматриваются возможные направления движения в одной и той же последовательности; договоримся, что просмотр будет происходить каждый раз против часовой стрелки — справа-сверху-слева-снизу; шаг производится в первую же обнаруженную свободную соседнюю клетку; клетка, в которую сделан шаг, отмечается крестиком.

2. Если из очередной клетки дальше пути нет (тупик), то следует возврат на один шаг назад и просматриваются еще не испробованные пути движения из этой точки; при возвращении назад покинутая клетка отмечается пробелом.

3. Если очередная клетка, в которую сделан шаг, оказалась на краю лабиринта (на выходе), то на печать выводится найденный путь.

Программу будем строить методом последовательной детализации..

Процедура GO пытается сделать шаг в клетку с координатами х, у. Если эта клетка оказывается на выходе из лабиринта, то пройденный путь выводится на печать. Если нет, то в соответствии с установленной выше последовательностью делается шаг в соседнюю клетку. Если клетка тупиковая, то выполняется шаг назад. Из сказанного выше следует, что процедура носит рекурсивный характер.

Для вывода найденных траекторий составляется процедура PRINTLAB.

Решение данной задачи в Delfi смотри в практической части задача 4.


 


<== предыдущая | следующая ==>
Изменение задолженности через 36 месяцев | Введение. Глава 1. Теоретические основы формирования коммуникативных универсальных учебных

Date: 2015-07-24; view: 1878; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию