Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Принцип неопределенности





Лекция 7

Принцип неопределённости Гейзенберга. Квантовые числа. Принцип Паули. Фундаментальные взаимодействия: гравитационное, слабое, электромагнитное, сильное.

Принцип неопределенности.

В классической механике состояние материальной точки определяется заданием значений координат, импульса, энергии и т.д. Перечисленные величины называются динамическими переменными. Наличие волновых свойств частиц вещества означает, что у частиц отсутствует траектория движения. В результате возникает неопределённость в одновременном определении координаты и скорости частицы. Этот факт лежит в основе принципа неопределённости, математическое выражение которого сформулировано в виде двух соотношений неопределённости.

Так, например, электрон не может иметь одновременно точных значений координаты x и компоненты импульса . Неопределенности значений x и удовлетворяют соотношению

(7.17)


Соотношение, аналогичное (7.17), имеет место и для y и , для z и , а также для ряда других пар величин (называемых канонически сопряженными). Соотношение (7.17) и подобные ему называются соотношением неопределенностей Гейзенберга. Энергия и время являются канонически сопряженными величинами. Поэтому для них также справедливо соотношение неопределенностей

(7.18)


Это соотношение означает, что если время перехода системы из одного состояния в другое характеризуется временем D t, то неопределенность энергии системы равна

(7.19)

 

Процесс измерения энергии сопровождается изменением состояния. Поэтому, неопределенность результата измерения D E связана с длительностью измерения D t (т.е. временем перехода системы из одного состояния в другое) соотношением (7.18).

Соотношение неопределенностей вытекает из волновых свойств микрочастиц. Поясним его на следующем примере. Пусть поток электронов проходит через узкую щель шириной D x, расположенную перпендикулярно к направлению их движения. При прохождении электронов за щелью наблюдается дифракционная картина, как в случае плоской световой волны. Основная доля электронов приходится на область центрального максимума.

Сильное ядерное взаимодействие (цветовое взаимодействие, ядерное взаимодействие) — одно из четырёх фундаментальных взаимодействий в физике. Сильное взаимодействие действует в масштабах атомных ядер и меньше, отвечая за притяжение между нуклонами в ядрах. В сильном взаимодействии участвуют кварки и глюоны, а также составленные из них элементарные частицы, называемые адронами. Необходимость введения понятия сильных взаимодействий возникла в 1930-х годах, когда стало ясно, что ни явление гравитационного, ни явление электромагнитного взаимодействия не могли ответить на вопрос, что связывает нуклоны в ядрах. В 1935 году японский физик Х. Юкава построил первую количественную теорию взаимодействия нуклонов, происходящего посредством обмена новыми частицами, которые сейчас известны как пи-мезоны (или пионы). Пионы были впоследствии открыты экспериментально в 1947 году.

В этой пион-нуклонной теории притяжение или отталкивание двух нуклонов описывалось как испускание пиона одним нуклоном и последующее его поглощение другим нуклоном (по аналогии с электромагнитным взаимодействием, которое описывается как обмен виртуальным фотоном). Эта теория успешно описала целый круг явлений в нуклон-нуклонных столкновениях и связанных состояниях, а также в столкновениях пионов с нуклонами. Численный коэффициент, определяющий «эффективность» испускания пиона, оказался очень большим (по сравнению с аналогичным коэффициентом для электромагнитного взаимодействия), что и определяет «силу» сильного взаимодействия.

 

Date: 2015-07-24; view: 404; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию