Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Собственные векторы – это в точности векторы фундаментальной системы решений





Собственно, на протяжении всего урока мы только и занимались тем, что находили векторы фундаментальной системы. Просто до поры до времени данный термин особо не требовался. Кстати, те ловкие студенты, которые в маскхалатах проскочили тему однородных уравнений, будут вынуждены вкурить её сейчас.

Запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

Единственное действие состояло в удалении лишних строк. В результате получена матрица «один на три» с формальной «ступенькой» посередине.
– базисная переменная, – свободные переменные. Свободных переменных две, следовательно, векторов фундаментальной системы тоже два.

Выразим базисную переменную через свободные переменные: . Нулевой множитель перед «иксом» позволяет принимать ему совершенно любые значения (что хорошо видно и из системы уравнений).

В контексте данной задачи общее решение удобнее записать не в строку, а в столбец:

Паре соответствует собственный вектор:
Паре соответствует собственный вектор:

Примечание: искушенные читатели могут подобрать данные векторы и устно – просто анализируя систему , но тут нужны некоторые знания: переменных – три, ранг матрицы системы – единица, значит, фундаментальная система решений состоит из 3 – 1 = 2 векторов. Впрочем, найдённые векторы отлично просматриваются и без этих знаний чисто на интуитивном уровне. При этом даже «красивее» запишется третий вектор: . Однако предостерегаю, в другом примере простого подбора может и не оказаться, именно поэтому оговорка предназначена для опытных людей. Кроме того, а почему бы не взять в качестве третьего вектора, скажем, ? Ведь его координаты тоже удовлетворяют каждому уравнение системы, и векторы линейно независимы. Такой вариант, в принципе, годен, но «кривоват», поскольку «другой» вектор представляет собой линейную комбинацию векторов фундаментальной системы.

Ответ: собственные числа: , собственные векторы:

Аналогичный пример для самостоятельного решения:

Пример 7

Найти собственные числа и собственные векторы

Примерный образец чистового оформления в конце урока.

Следует отметить, что и в 6-ом и в 7-ом примере получается тройка линейно независимых векторов, поэтому исходная матрица представима в каноническом виде . Но такая малина бывает далеко не во всех случаях:

Пример 8

Найти собственные числа и собственные векторы матрицы

Решение: составим и решим характеристическое уравнение:

Определитель раскроем по первому столбцу:

Дальнейшие упрощения проводим согласно рассмотренной методике, избегая многочлена 3-ей степени:

– собственные значения.

Найдем собственные векторы:

1) С корнем затруднений не возникает:

Не удивляйтесь, помимо комплекта в ходу также переменные – разницы тут никакой.

Из 3-го уравнения выразим – подставим в 1-ое и 2-ое уравнения:

Из обоих уравнений следует:

Пусть , тогда:

2-3) Для кратных значений получаем систему .

Запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

(1) Ко второй строке прибавили первую строку, умноженную на –2.

(2) Последние две строки одинаковы, одну из них удалили.

(3) Дальше пошла уместная доводка матрицы методом Жордано-Гаусса: к первой строке прибавили вторую строку.

(4) У первой строки сменили знак.

Переменные – базисные, переменная – свободная. Так как свободная переменная одна, то фундаментальная система решений состоит из одного вектора. И мы счастливые наблюдатели случая, когда кратным собственным числам соответствует единственный собственный вектор. Записываем в столбец общее решение системы: , и, задавая свободной переменной значение , получаем нашего героя:

Ответ: собственные числа: , собственные векторы: .

Исходную матрицу нельзя представить в базисе из собственных векторов по той простой причине, что такого базиса не существует – хоть трёхмерные векторы-столбцы и линейно независимы, но самих-то их всего лишь два. Недобор.

Шестое чувство мне подсказывает, что многие воодушевились на задание повышенной сложности:

Пример 9

Найти собственные числа и собственные значения матрицы

Можно ли записать данную матрицу в канонической форме?

Не беда, если дело застопорилось, в психотерапевтических целях отложите тетрадь с решением на чёрный день. Когда заест скука – самое то =)

Успехов!

Решения и ответы:

Пример 2: Решение: Найдем собственные значения. Составим и решим характеристическое уравнение:

– собственные значения.
Найдем собственные векторы:
1)

Пусть
– собственный вектор.
2)

Пусть
– собственный вектор.
Ответ: собственные значения: , собственные векторы: .

Пример 5: Решение: сначала найдем собственные числа. Составим и решим характеристическое уравнение:

Определитель раскроем по первой строке:

– собственные значения.
Найдем собственные векторы:
1)

Пусть

2)

Пусть

3)

Пусть

Ответ: собственные векторы:

Пример 7: Решение: составим и решим характеристическое уравнение:

– собственные значения.
Найдем собственные векторы:
1-2)

Запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

Выразим базисную переменную через свободные переменные: и запишем общее решение: . Найдём векторы фундаментальной системы, которые в данной задаче являются собственными векторами матрицы:
Паре соответствует собственный вектор:
Паре соответствует собственный вектор:
Примечание: в качестве решения системы линейных уравнений данного пункта напрашивается тройка , но столбец линейно выражается через векторы фундаментальной системы. Использование такого и подобных ему решений в качестве одного из собственных векторов корректно, но нестандартно.
3)

Пусть

Ответ: собственные числа: , собственные векторы:

Пример 9: Решение: Составим и решим характеристическое уравнение:

Определитель вычислим понижением порядка. К третьей строке прибавим вторую строку, умноженную на –1. К четвёртой строке прибавим вторую строку, умноженную на :

Разложим определитель по 4-му столбцу:

К третьей строке прибавим первую строку:

Собственные значения:

Найдем собственные векторы:
1)

Запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

(1) Первую и третью строку поменяли местами.
(2) Ко 2-ой и 3-ей строкам прибавили первую строку, умноженную на –1 и –2 соответственно.
(3) Вторую строку разделили на 2.
(4) К 3-ей и 4-ой строкам прибавили вторую строку, умноженную на –1.
(5) Последние две строки пропорциональны, третью строку удалили. У первой строки сменили знак, вторую строку умножили на 2.
(6) К первой и второй строкам прибавили третью строку.
(7) У первой строки сменили знак, последние две строки разделили на 2.
Выразив базисные переменные через свободную, запишем общее решение: . Придаём свободной переменной значение и получаем собственный вектор
2-3)

Запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

(1) Первая и четвёртая строки одинаковы. Вторая и третья строки одинаковы. Первую и вторую строку удалили из матрицы.
Выразим базисные переменные через свободные переменные :

Таким образом, общее решение: .
Фундаментальная система состоит из двух векторов:
при получаем ;
при получаем .

4)

Запишем матрицу системы и с помощью элементарных преобразований приведём её к ступенчатому виду:

(1) Первую и третью строку поменяли местами.
(2) Ко 2-ой и 3-ей строкам прибавили первую строку, умноженную на –1 и 2 соответственно.
(3) Вторую строку разделили на 2.
(4) К 3-ей и 4-ой строкам прибавили вторую строку.
(5) Последние две строки пропорциональны, третью строку удалили. Вторую строку умножили на –2.
(6) К первой и второй строкам прибавили третью строку.
(7) Последние две строки разделили на 2.
Общее решение: . Придаём свободной переменной значение и получаем собственный вектор .

Ответ: собственные значения: , собственные векторы:
. Перечисленные четыре четырехмерных вектора линейно независимы, поэтому матрицу можно записать в канонической форме . Но лучше не надо =)

Автор: Емелин Александр

 

Высшая математика для заочников и не только >>>

(Переход на главную страницу)

Как можно отблагодарить автора?


 

 

Комплексные числа для чайников

Не занимайтесь комплексными числами после комплексного обеда

 

На данном уроке мы познакомимся с понятием комплексного числа, рассмотрим алгебраическую, тригонометрическую и показательную форму комплексного числа. А также научимся выполнять действия с комплексными числами: сложение, вычитание, умножение, деление, возведение в степень и извлечение корня.

Не беспокойтесь, я вас напугал, я вас и рассмешу. Для освоения комплексных чисел не требуется каких-то специальных знаний из курса высшей математики, и материал доступен даже школьнику. Достаточно уметь выполнять основные алгебраические действия с «обычными» числами и немного рубить в тригонометрии. Впрочем, если что позабылось,
я напомню.

Урок состоит из следующих параграфов:
1) Понятие комплексного числа.
2) Алгебраическая форма комплексного числа. Сложение, вычитание, умножение и деление комплексных чисел.
3) Тригонометрическая и показательная форма комплексного числа.
4) Возведение комплексных чисел в степень.
5) Извлечение корней из комплексных чисел. Квадратное уравнение с комплексными корнями.

На любой вкус и цвет – кому, что интересно. А комплексные числа действительно становятся наиболее интересной темой, после того, как студенты знакомятся с другими разделами высшей алгебры =). Если Вы являетесь чайником, или только-только приступили к изучению комплексных чисел, то параграфы лучше прочитать по порядку, без «перескоков».

Сначала вспомним «обычные» школьные числа. В математике они называются множеством действительных чисел и обозначаются буквой (в литературе, рукописях заглавную букву «эр» пишут жирной либо утолщённой). Все действительные числа сидят на знакомой числовой прямой:

Компания действительных чисел очень пёстрая – здесь и целые числа, и дроби, и иррациональные числа. При этом каждой точке числовой прямой обязательно соответствует некоторое действительное число.

 

Date: 2015-07-23; view: 1187; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию