Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Магнитная цепь машины





Размеры, конфигурация, материал

 

Главные размеры. Проектирование машин постоянного тока начинается с определения главных размеров: наружного диаметра якоря D н2 и длины сердечника якоря 2. В гл. 1 было указано, что предельно допускаемая величина D н1max зависит от высоты оси вращения h. Если заданием на проектирование значение h не регламентировано, то его предварительно выбирают из табл. 10-1, 10-2, данные которых соответствуют существующему среднему уровню привязки мощностей к h двигателей с разными степенями защиты и способами охлаждения; для генераторов снижают мощности, указанные в таблицах, на 10-25% (больший процент снижения - для меньших мощностей).

В этих таблицах приведены также значения вращающего момента на валу М2.

Предельно допускаемый наружный диаметр D н1max может быть определен, в зависимости от значения h, по (1-27) и (1-29) при монолитной станине и по (1-27) и (1-28)—при шихтованной.

 

Таблица 10-1

  h, мм   Р 2 (кВт) при различных значениях n, об/мин     М 2 (Н×м) при1500 об/мин
           
Двигатели исполнения по защите IР22 со способом охлаждения IС01
  0,75 0,55 0,37 0,18 0,12 0,09 2,35
1,1 0,75 0,55 0,25 0,18 0,12 3,5
  ¾ ¾ ¾ 0,37 0,25 0,18 ¾
1,5 1,1 0,75 0,55 0,37 0,25 4,8
  2,2 1,5 1,1 ¾ ¾ ¾ 7,0
3,0 2,2 1,5 0,75 0,55 0,37 9,5
  4,0 3,0 2,2 1,1 0,75 0,55  
5,5 4,0 3,0 1,5 1,1 0,75  
  7,5 5,5 4,0 2,2 1,5 1,1 25,5
  7,5 5,5 3,0 2,2 1,5  
      7,5 4,0 3,0 2,2 47,5
18,5     5,5 4,0 3,0  
  18,5 ¾ 7,5 5,5 4,0 ¾
        ¾ ¾ ¾ 95,5
    18,5   7,5 5,5  
          ¾ ¾  
      18,5   7,5  
  ¾ ¾ ¾ ¾     ¾
        18,5    
          18,5  
  ¾            
¾            
  ¾         ¾  
¾            
  ¾ ¾   ¾ ¾ ¾  
¾ ¾     ¾    
¾ ¾          
Двигатели исполнения по защите IP44 со способом охлаждения IС0141
  0,55 0,37 0,25 0,18 0,12 ¾ 1,5
0,75 0,55 0,37 0,25 0,18 ¾ 2,35
  1,1 0,75 0,55 0,37 0,25 ¾ 3,5
1,5 1,1 0,75 0,55 0,37 ¾ 4,8
  2,2 1,5 1,1 0,75 0,55 ¾ 7,0
3,0 2,2 1,5 1,1 0,75 ¾ 9,5
  4,0 3,0 2,2 1,5 1,1 ¾  
5,5 4,0 3,0 2,2 1,5 ¾  
  7,5 5,5 4,0 3,0 2,2 ¾ 25,5
  7,5 5,5 4,0 3,0 ¾  
      7,5 5,5 4,0 ¾ 47,5
18,5     7,5 5,5 ¾  
    18,5 ¾ ¾ ¾ ¾ ¾
        7,5 ¾ 95,5
Двигатели исполнения по защите IP44 со способом охлаждения IС0041
  0,37 0,25 0,18 0,12 0,09 ¾ 1,15
0,55 0,37 0,25 0,18 0,12 ¾ 1,5
  0,75   0,37 0,25 0,18 ¾ 2,35
1,1   0,55 0,37 0,25 ¾ 3,5
  1,5 1,1 0,75 0,55 0,37 ¾ 4,8
2,2   1,1 0,75 0,55 ¾ 7,0
                           
Таблица 10-2
  3,0 2,2 1,5 1,1 0,75 ¾ 9,5
4,0 3,0 2,2 1,5 1,1 ¾  
  5,5 4,0 3,0 2,2 1,5 ¾  
7,5 5,5 4,0 3,0 2,2 ¾ 25,5
    7,5 5,5 4,0 3,0 ¾  
    7,5 5,5 4,0 ¾ 47,5
  ¾ ¾
18,5     7,5 5,5 ¾  
  h (мм) при   Pi (кВт) для следующих частот вращения, об/мин M 2 (Н×м) при частотах вращения, об/мин
монолитной станине шихтованной станине                        
Двигатели исполнения IР22 (или IP23) и IР44 со способом охлаждения IС17 или IС37
    ¾       ¾ ¾ ¾ ¾ ¾ ¾   ¾
¾ ¾       ¾ ¾ ¾ ¾ ¾   ¾
¾ ¾ ¾       ¾ ¾ ¾ ¾ ¾  
¾ ¾ ¾ ¾       ¾ ¾ ¾ ¾  
            ¾     ¾ ¾ ¾   ¾
¾               ¾ ¾ ¾  
¾ ¾               ¾ ¾  
¾ ¾ ¾ ¾           ¾ ¾  
    ¾ ¾ ¾   ¾ ¾ ¾ ¾ ¾ ¾   ¾
¾ ¾ ¾ ¾           ¾ ¾  
¾ ¾ ¾ ¾ ¾           ¾  
                                         

 

Для определения одного из главных размеров — наружного диаметра сердечника якоря D н2 — можно воспользоваться зависимостью D н2= f (D п1), приведенной на рис. 10-1, с учетом различного количества главных полюсов и наличия компенсационной обмотки. При h <112 мм обычно применяют =2, а при h 112 мм — =4. Компенсационную обмотку используют в машинах с h 355 мм, работающих, как правило, в более тяжелых условиях: высоких пусковых, тормозных и перегрузочных моментов и широких диапазонов регулирования частоты вращения путем ослабления поля.

Рис.10-1. Среднее значения .

Для удобства выбора диаметров D н1 и D н2 при заданной или выбранной стандартной высоте оси вращения h в табл. 10-3 приведены предельно допускаемые значения D н1max и D н2max для h =80¸500 мм. Здесь же указаны допуски на штамповку , а также ширина резаных лент и стандартной рулонной стали, из которых штампуются листы сердечника якоря. При D н2 457 мм (что соответствует 400 мм) листы якоря штампуют из резаной ленты, которая по согласованию сторон может поставляться различной ширины, не превышающей 500 мм. При D н2>457 мм листы якоря штампуют из рулонной стали стандартной ширины, указанной в § 2-3. Данные табл. 10-3 соответствуют выполнению машин с монолитной станиной; при шихтованной станине размеры D н1 и D н2, определяемые по (1-28) и рис. 10-1, соответственно отличаются от данных табл. 10-3.

 

Таблица 10-3
Высота, мм Диаметр, мм   2   , мм Ширина (мм) при однорядной штамповке
h h 1 D н1max D н2max резаных лент рулонной стали
              ¾
              ¾
              ¾
              ¾
              ¾
              ¾
              ¾
              ¾
              ¾
              ¾
              ¾
              ¾
              ¾
              ¾
            ¾  
            ¾  
                 

При проектировании части серии (двух машин и более на одном диаметре) для облегчения производства необходимо унифицировать основные размеры и конфигурацию магнитопровода машины в его поперечном сечении — диаметры D h1, D h2, внутренний диаметр станины D 1, внутренний диаметр листов якоря D 2 наружный диаметр коллектора D к, конфигурацию и размеры листов главных и добавочных полюсов, а при полузакрытых пазах якоря также количество и размеры пазов якоря, количество и размеры коллекторных пластин.

Расчетную мощность Р' определяют для двигателей по (1-25), а для генераторов—по (1-26). Для двигателей значение коэффи­циента k н в (1-25) принимают из рис. 10-2. Для генераторов вместо k н подставляют в (1-26) значение (2- k н).

 

 

Рис.10-2. Средние значения

– исполнение по защите IP22; способ

охлаждения IC01; б – исполнение по за-

щите IP44; способ охлаждения IC0141;

в – исполнение по защите IP44; способ

охлаждения IC0041.

Значение коэффициента k т в (1-25) для двигателей с параллельным и смешанным возбуждением принимают из рис. 10-3. Для генераторов с параллельным возбуждением вместо k т подставляют в (1-26) величину 2- k т. Для машин (двигателей и генераторов) с независимым или последовательным возбуждением k т = 1.

 

 

Рис.10-3. Средние значения

– исполнение по защите IP22; способ

охлаждения IC01; б – исполнение по за-

щите IP44; способ охлаждения IC0141;

в – исполнение по защите IP44; способ

охлаждения IC0041.

Предварительное значение КПД h ' для двигателей и генераторов может быть принято на уровне средних энергетических показателей выпускаемых машин (рис. 10-4). Учитывая, что значение h ' - предварительное, уточняемое в дальнейших расчетах, можно пренебречь влиянием на его величину класса нагревостойкости изоляции, а следовательно, допускаемых электромагнитных нагрузок.

 

 

Рис. 10-4. Средние значения h ¢ = f (P 2):

– исполнение по защите IP22; способ

охлаждения IC01; – исполнение по за-

щите IP44; способ охлаждения IC0141;

– исполнение по защите IP44; способ

охлаждения IC0041.

 

Для определения второго главного размера — длины сердечника якоря - вначале по (1-32) находят расчетную длину сердечника '2. При этом задаются предварительным значением электромагнитных нагрузок А ¢2 и В ¢d, а так же расчетным коэффициентом полюсной дуги a ¢.

Выбор значений А ¢2 и В ¢d, зависит от ряда факторов, в том числе от формы пазов и вида обмотки якоря. При D н2 < 202 мм (что соответствует h < 200 мм) применяют овальные полузакрытые пазы со всыпной обмоткой якоря из проводов круглого поперечного сечения.

При D н2>202 мм якорь имеет открытые прямоугольные пазы с обмоткой, выполняемой жесткими секциями из проводов прямоугольного поперечного сечения. Преимущества и недостатки этих двух видов исполнений указаны в § 9-4.

На рис. 10-5 приведены средние значения А ¢2 и В ¢d ,, а на рис. 10-6 — α '.

 

Рис. 10-5. Средние значения А ¢2 = f (D н2) () и В ¢d =f (D н2) (б) при классе нагревостойкости изоляции F:

1 – исполнение по защите IP22, способ охлаждения IC01,

полузакрытые пазы якоря, частота вращения 1500 об/мин, число главных полюсов 2 р =2;

2 - то же, что 1, но 2 р =4;

3 - IP22, ICO1, открытые пазы, 1500 об/мин, 2 р =4;

4 - IP44, IC0141, полузакрытые пазы, 1500 об/мин, 2 р =2;

5 - то же, что 4, но 2 р =4;

6 - IP44, IC0041, полузакрытые пазы, 1500 об/мин, 2 р =2;

7 - то же, что 6, но 2 р =4;

8 - IP22 или IP44, IC17 или IC37, полузакрытые пазы, все частоты вращения, 2 р =4;

9 - то же, что 8, но открытые пазы.

 

 

Рис. 10-6. Средние значения α'= f (D н2).

 

Для машин со способами охлаждения IC01, IC0141 и IC0041 значения А ¢2 и В ¢d соответствуют исполнению с изоляцией класса нагревостойкости F и с частотой вращения 1500 об/мин. При изоляции классов нагревостойкости В и Н, а также при частотах вращения, отличающихся от 1500 об/мин, принимаемое из рис. 10-5 значение А ¢2 умножают на коэффициенты k 1 и k 4, a В ¢d, — на коэффициенты k 2 и k 5, где поправочные коэффициенты k 1 и k 2 (табл. 10-4) учитывают влияние на принимаемые электромагнитные нагрузки изменения допускаемого превышения температуры обмоток при классах нагревостойкости изоляции В и Н, а k 4 и k 5 (табл. 10-5)—влияние изменения эффекта охлаждения обмоток при других частотах вращения.

Таблица 10-4

  Коэффициент Поправочные коэффициенты при классе нагревостойкости
В Н
IP22; IC01 IP22; IC17 IP44; IC37 IP44; IC0141 IP44; IC0041   IP22; IC01 IP22; IC17 IP44; IC37 IP44; IC0141   IP44; IC0041  
k 1 (для А ¢2) k 2 (для В 'd) k 3 (для J 'П, J'Д) 0,91 0,97 0,91 0,87 0,97 0,87 0,83 0,97 0,83 1,1 1,04 1,1 1,15 1,04 1,15 1,2 1,04 1,2

 

 

Таблица 10-5

  Коэффициент Степень защиты, способ охлаждения   Диаметр D н2, мм Коэффициенты: k 4, k 5, и k 6 при частоте вращения, об/мин  
         
k 4 (для А ¢2) IP22; IC01   80—120   1,15   1,09   0,92   0,88   0,82  
Свыше 120—220   1,03     1,07     0,94     0,91     0,87    
Свыше 220—360   0,96     1,02     0,98     0,95     0,92    
IP44; IC0141 IC0041     80—120   0,86   0,95   1,03   1,04   1,05  
Свыше 120—220   0,77     0,92     1,05     1,07     1,08    
k 5 (для В 'd) IP22; IC01 80—360   1,03   1,02   0,94   0,91   0,87  
IP44; IC0141 IC0041   80—220     1,06     1,04     0,96     0,93     0,9    
k 6 (для J 'п, J 'Д) IP22; IC01   IP44; IC0141 IC0041   80—360   1,21   1,13   0,88   0,81   0,74  
IP44; IC0141 IC0041   80—220     1,17     1,09     0,92     0,88     0,8    

 

Для машин со способами охлаждения IC17 и IC37значения А ¢2 и В ¢d, (рис. 10-5) также соответствуют изоляции класса нагревостойкости F; при изоляции классов В и Н значение А ¢2 умножают на коэффициент k 1, а В ¢d — на коэффициент k 2. Частота вращения при этих способах охлаждения практически не влияет на эффект вентиляции и соответственно на принимаемые электромагнитные нагрузки.

Электромагнитные нагрузки двигателей со степенью защиты IP22 и способом охлаждения от пристроенного электровентилятора IC06 принимают, как при способе охлаждения IC17. Для двигателей со степенью защиты IP44 и способом охлаждения от пристроенного электровентилятора IC0641 электромагнитные нагрузки вне зависимости от частоты вращения могут быть приняты такими же, как у двигателей со способом охлаждения IC0141 при n =1500 об/мин. Отношение

(10-1)

целесообразно выбирать таким, чтобы оно приближалось к lmax, указанному на рис. 10-7, но не превышало его. Если l выходит за пределы lmax, то, как указано в § 1-3, необходимо перейти на другую, большую стандартную высоту оси вращения и повторить расчет главных размеров и l.

При проектировании части серии с двумя или тремя длинами сердечника якоря на одном диаметре, значение l машины большей мощности должно приближаться к lmax, но не превышать его; значение l машины меньшей мощности не регламентируется.

В отдельных случаях, например у тихоходных машин, значение lmax может быть увеличено в сравнении с данными рис. 10-7, но с соответствующей проверкой механической жесткости и прочности вала, а также коммутационных параметров машины.

 

Рис. 10-7. Значения lmax= f (D н2).

 

 

Питание двигателей постоянного тока осуществляется в настоящее время главным образом от тиристорных преобразователей. В то время как у генераторов постоянного тока пульсация напряжения мала и на работе двигателей практически не отражается, при питании от тиристорных преобразователей в кривых напряжения и тока возникают значительные переменные составляющие, которые ухудшают потенциальные условия на коллекторе и коммутацию двигателей, особенно при регулировании частоты вращения путем ослабления поля главных полюсов; пульсации увеличивают также магнитные потери в стали и нагрев двигателей .

Уровень указанных осложнений работы двигателей зависит от качества выпрямления, которое определяется формой кривой выпрямленного напряжения и характеризуется коэффициентом пульсации представляющим собой отношение амплитуды первой гармонической к среднему значению выпрямленного напряжения.

Для уменьшения пульсаций у двигателей с h < 315 мм обычно применяют питание от трехфазной мостовой схемы баз сглаживающих фильтров. Особенно неблагоприятно влияют пульсации напряжения и тока на работу двигателей большой мощности с h > 355 мм, поэтому у таких двигателей осуществляют питание от 6- или 12-фазных выпрямителей, а также сглаживающие фильтры. При указанных схемах питания может быть обеспечен коэффициент пульсации, не превышающий 1,1.

Чтобы улучшить работу двигателей, питаемых пульсирующим напряжением, используют шихтованные станины, однако при этом несколько усложняется конструкция двигателей и увеличивается трудоемкость их изготовления.

При проектировании двигателей с монолитной станиной, питаемых от тиристорных преобразователей с коэффициентом пульсации более 1,1, значения А' 2 по рис. 10-5, следует снижать на 10%, a B' d, по рис. 10-5, б ¾ на 5%.

Сердечник якоря. Сердечник собирают из отдельных отштампованных листов толщиной 0,5 мм, покрытых изоляционным лаком для уменьшения потерь в стали от вихревых токов. Для сер­дечников рекомендуются следующие марки холоднокатаной изо­тропной электротехнической стали:

 

Высота оси вращения, мм 80—200 225—315 355—500
Марка стали      

Коэффициент заполнения сердечника якоря сталью k с=0,95. При сборке сердечника размеры пазов в штампе и в свету не совпадают из-за смещения листов друг относительно друга. При­пуски на сборку сердечника, приведенные в табл. 10-6, больше в случае штамповки отдельным (пазным) штампом, применяемым при изготовлении небольших партий машин; при массовом изго­товлении, используют комплектный (компаундный) штамп.

Таблица 10-6

Высота оси вращения h, мм Припуск на сборку сердечника по ширине паза b c (мм) для штампов Припуск на сборку сердечника по высоте паза h с (мм) для штампов
    компаундный   пазный   компаундный   пазиый  
80—132   0,1   0,15   ¾   ¾  
160—200   0,2   0,25   ¾   ¾  
225—315   0,3   0,35   0,3   0,35  
355—500   0,35   0,4   0,3   0,35  

 

Для повышения устойчивости работы регулируемых двигателей при низких частотах вращения, а также для снижения магнитного шума машин делают скос пазов в сердечнике. Скос может быть в пределах от 1/2 до 1 зубцового деления.

При 2' < 350 мм конструктивная длина сердечника якоря 2= 2' с округлением до ближайшего целого числа (при длине менее 100) или до ближайшего числа, кратного пяти (при длине 100—350 мм). При 2'>350 мм для улучшения охлаждения в сердечнике якоря целесообразно применение радиальных вентиляционных каналов (рис. 10-8). В этом случае значение 2 определяется по (1-34) с округлением до ближайшего числа, кратного пяти. Количество вентиляционных каналов n к2 определяется длиной одного пакета сердечника якоря, выбираемой в пределах 55—75 мм; длина вентиляционного канала k2=10 мм. Следует учесть, что при округлении 2 соответственно изменяется расчетная длина сердечника 2'.

Рис.10-8.Сердечник якоря с радиальными

вентиляционными каналами.

 

Эффективная длина сердечника якоря (мм) при отсутствии радиальных каналов

(10-2)

при наличии радиальных каналов

. (10-3)

 

С целью улучшения охлаждения, а также для уменьшения массы и динамического момента инерции якоря в сердечниках якорей машин с h =225¸500 мм предусматривают каналы в коллекторе, а также круглые аксиальные вентиляционные каналы в сердечнике якоря, (рис. 10-9) в соответствии с данными, приведенными ниже (N — количество рядов):

 

h, мм                
N                
n k2                
d k2, мм                

 

 

Рис. 10-9.

Лист якоря с аксиальными

вентиляционными каналами.

 

У машин с h < 200 мм аксиальные каналы обычно не предусматривают из-за повышения при этом магнитной индукции в спинке якоря и затруднения с размещением каналов в коллекторе.

Предварительное значение внутреннего диаметра листов якоря D 2 определяют из рис. 10-10. При выполнении механического расчета вала на прогиб диаметр D 2 при необходимости может быть изменен.

Рис. 10-10. Средние значения D 2= f (D н2 ):

1 –полузакрытые пазы якоря,2 р =2;

2 –то же, что 1, но 2 р =4;

3 –открытые пазы якоря, 2 р =4.

Сердечники главных полюсов. Сердечники собирают из штам­пованных листов анизотропной, холоднокатаной электротехнической стали марки 3411 толщиной 1 мм; коэффициент заполнения сердечника сталью k c=0,98. Указанная марка стали, обладающая повышенной магнитной проницаемостью вдоль про­ката, снижает магнитное напряжение полюсов, но только если при штам­повке ось листа полюса совпадает с на­правлением проката. В этом случае поперек проката, а следовательно по­перек полюса, сталь будет обладать значительно меньшей магнитной проводимостью, поэтому уменьшается раз­магничивающее действие реакции яко­ря. Одновременно уменьшается маг­нитный поток рассеяния между глав­ными и добавочными полюсами, что улучшает коммутацию. Листы не име­ют изолирующего покрытия, так как сердечники полюсов не подвергаются периодическому перемагничиванию.

Количество главных полюсов влияет на технико-экономические показатели машины. При увеличении уменьшается ток, приходящийся на щеточный бракет, что при неизменной ширине щеток уменьшает длину коллектора, лобовых частей обмотки яко­ря, а следовательно, и всей машины. Увеличение уменьшает площадь поперечного сечения станины, что при неизменной ее длине снижает толщину станины и массу машины. Вместе с тем увеличение повышает максимальное напряжение между коллек­торными пластинами, уменьшает расстояние между главными и добавочными полюсами, в результате чего понижаются допусти­мое значение α' и коэффициент использования машины. Увеличе­ние также повышает трудоемкость изготовления машины.

В соответствии с опытом электромашиностроения, учитываю­щим указанные противоречивые требования, целесообразно при­менять 2 р =2 для машин с h =80¸100 мм и 2 р =4 для машин с h =112¸ 500 мм.

Форма наконечника полюса определяется видом выбранного воздушного зазора между главными полюсами и якорем. У некомпенсированных машин для уменьшения размагничивающего действия реакции якоря и понижения уровня магнитного шума машин применяют эксцентричный зазор, при котором центры радиусов якоря и полюсной дуги не совпадают (рис. 10-11), при этом зазор d' имеет наименьшее значение под серединой полюса, постепенно увеличиваясь к его краям.

 

Рис. 10-11. Лист главного полюса некомпенсированной

машины с эксцентричным зазором.

 

У компенсированной машины нет необходимости в устройстве эксцентричного зазора, так как МДС компенсационной обмотки направлена против МДС об­мотки якоря и нейтрализует ее; у таких машин применяют кон­центричный зазор (рис. 10-12), одинаковый по всей ширине полюсного наконечника.

 

 

Рис. 10-12. Лист главного полюса машины

с компенсационной обмоткой, с концентричным зазором.

 

 

Для размещения компенсационной обмотки в штампуемых листах полюса предусматривают прямоугольные пазы.

 

Выбирают величину воздушного зазора d с учетом противоречивых требований, так как при увеличении воздушного зазора повыша­ются его магнитное напряжение, МДС и по­тери обмотки возбуждения, но уменьшается размагничивающее действие реакции якоря и улучшается устойчивость скоростной характеристики двигателя. На рис. 10-13 приведены средние значения d = f (D н2), применяемые на практике.

 

Рис. 10-13. Средние значения

d =f(D н2).

 

 

При применении эксцентричного зазора целесообразно выбирать d''=3d ', где d', d"— высота зазора у оси и у края полюса соответ­ственно. Принимаемый для расчета магнит­ной цепи по рис. 10-13 эквивалентный зазор (мм)

. (10-4)

Соответственно d '= d /1,5; d ''=2 d.

Длина сердечника полюса п= 2; высоту полюса h п рассчитывают по (10-15), после определения размеров станины, причем высота полюса должна быть достаточной для размещения обмотки возбуждения; после расчета обмотки возбуждения и вычерчивания эскиза междуполюсного окна с расположением катушек h п может измениться.

 

Расчетная ширина полюсной дуги (мм)

, (10-5)

где полюсное деление определяют по (1-19).

Действительная ширина полюсной дуги у некомпенсированной машины с эксцентричным зазором

; (10-6)

у компенсированной машины с концентричным зазором

(10-7)

Предварительное значение магнитного потока в воздушном зазоре (Вб)

(10-8)

Эффективная длина сердечника полюса (мм)

. (10-9)

Ширина сердечника полюса (мм)

(10-10)

где — коэффициент магнитного рассеяния главных полюсов (при 2 р =2 1,15, а при 2 р =4 ¾ 1,2); B 'п — предваритель­ная магнитная индукция в сердечнике полюса, Тл:

Исполнение машины IР22; IP22; IP44; IC01 IC17 IC37 IP44; IC0141 IP44 IC0041
Магнитная индукция В 'п, Тл 1,6—1,7 1,4—1,5 1,35¾1,45

 

Ширина уступа полюса, предназначенная для упора обмотки возбуждения при ее креплении, b п' = (0,07¸0,14) b п.

Площадь поперечного сечения наконечника «» у машин без компенсационной обмотки должна быть такой, чтобы магнит­ная индукция в этом сечении не превышала 0,86 B п'. Исходя из этого, принимают в сечении «» высоту (мм)

(10-11)

Сердечники добавочных полюсов. Сердечники собирают из штампованных листов анизотропной, электротехнической стали 3411 толщиной 1 мм, коэффициент заполнения сердечника сталью k c=0,98. Преимущества применения этой стали, а также особен­ности штамповки такие же, как у главных полюсов. Листы сер­дечника не имеют изолирующего покрытия. В машинах с 2 р =2 применяют один добавочный полюс (2 р д=1),а с 2 р =4—четыре (2 р д=4).

Длина наконечника н.д добавочного полюса равна 2. Сердеч­ники полюсов шихтуются либо поперек оси (рис. 10-14, ), либо вдоль оси машины (рис. 10-14, ), в зависимости от того, с какой

стороны целесообразно образовать выступы для упора катушек при их креплении; размер выступа 5—8 мм.

У машин с h =355¸500 мм сердечники полюсов собирают из штампованных листов Т-образной формы (рис. 10-14, ), которая усиливает прочность крепления полюса к станине и одновре­менно снижает магнитную индукцию в наиболее насыщенном участке полюса.

 

 

Рис. 10-14. Лист добавочного полюса

с шихтовкой поперек ()

и вдоль () оси машины,

а также Т-образноной формы (в).

 

У машин с h =355¸500 мм сердечники полюсов собирают из штампованных листов Т-образной формы (рис. 10-14,б), которая усиливает прочность крепления полюса к станине и одновре­менно снижает магнитную индукцию в наиболее насыщенном участке полюса.

Предварительное значение ширины сердечника добавочного полюса b' д принимают по рис. 10-15.

 

Рис. 10-15. Средние значения :

1 –2 р =2, половинное число добавочных полюсов (2 рД =1);

2 –2 р =4, полное число добавочных полюсов (2 р Д=4);

3 –то же - машина с компенсационной обмоткой.

 

Величину воздушного зазора выбирают с учетом противоречивых требований. Повышение воздушного зазора увеличивает МДС и потери обмотки добавочных полюсов, а также коэффициент рассеяния магнитного потока добавочных полюсов, но вместе с тем уменьшает МДС, необходимую для проведения это­го магнитного потока через стальные участки магнитной цепи, со­действуя осуществлению прямолинейной зависимости ЭДС Е к от тока нагрузки (см. §10-12). На рис. 10-16 приведены средние значения dд = f (D н2 ), применяемые на практике. При расчете коммутационных параметров в § 10-12 значения dд могут уточняться. Высоту добавочного полюса h д рассчитывают по (10-16).

Рис. 10-16. Средние значения 'Д=f (DH2).

 

Станина. Монолитные станины выполняют из Ст3. В машинах с h =355¸500 мм могут применяться для улучшения коммутации станины, шихтованные из штампованных листов электротехнической стали 2312 толщиной 1 мм, коэффициент заполнения сердечника сталью k с=0,98.

Date: 2015-07-23; view: 461; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию