Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Задача на построение





Задачей на построение называется предложение, указывающее, по каким данным, какими инструментами, какую геометрическую фигуру требуется построить (начертить на плоскости) так, чтобы эта фигура удовлетворяла определённым условиям.

Решить задачу на построение с помощью циркуля и линейки – значит свести её к совокупности пяти элементарных построений, которые заранее считаются выполнимыми. Перечислим их.

1. Если построены две точки А и В, то построена прямая АВ, их соединяющая, а также отрезок АВ и любой из лучей АВ и ВА (аксиома линейки).

2. Если построена точка О и отрезок АВ, то построена окружность с центром в точке О и радиусом АВ, а также любая из дуг этой окружности.

3. Если построены две прямые, то построена точка их пересечения (если она существует).

4. Если построена прямая и окружность, то построена любая из точек их пересечения (если она существует).

5. Если построены две окружности, то построена любая из точек их пересечения (если она существует).

Сведение решения каждой задачи к элементарным построениям делает решение громоздким. Поэтому часто решение задачи сводят к так называемым основным построениям. Выбор некоторых построений в качестве основных в известной степени произволен. Например, в качестве основных построений можно рассмотреть следующие задачи: деление данного угла пополам; построение отрезка, равного данному; построение угла, равного данному; построение параллельной прямой, построение перпендикулярной прямой, деление отрезка в данном отношении; построение треугольника по трём сторонам, по двум сторонам и углу между ними, по стороне и двум прилежащим к ней углам; построение прямоугольного треугольника по гипотенузе и катету.

Решить задачу на построение – значит найти все её решения.

Последнее определение требует некоторых разъяснений.

Фигуры, удовлетворяющие условию задачи, могут различаться как формой так и размерами, так положением на плоскости. Различия в положении на плоскости принимаются или не принимаются в расчёт в зависимости от формулировки самой задачи на построение, а именно в зависимости от того, предусматривает или не предусматривает условие задачи определённое положение искомой фигуры относительно каких-либо данных фигур. Поясним это примерами.

Рассмотрим следующую простейшую задачу: построить треугольник по трём сторонам и углу между ними. Точный смысл этой задачи состоит в следующем: построить треугольник так, чтобы две стороны его были соответственно равны двум данным отрезкам, а угол между ними был равен данному углу. Здесь искомая фигура (треугольник) связана с данными фигурами (два отрезка и угол) только соотношениями равенства, расположение же искомого треугольника относительно данных фигур безразлично. В этом случае легко построить треугольник АВС, удовлетворяющий условию задачи. Все треугольники, равные треугольнику АВС, также удовлетворяют условию поставленной задачи. Однако нет никакого смысла рассматривать эти треугольники как различные решения данной задачи, ибо они отличаются один от другого только положением на плоскости, о чем в условии задачи ничего не сказано. Будем поэтому считать, что задача имеет единственное решение.

Итак, если условие задачи не предусматривает определённого расположения искомой фигуры относительно данных фигур, то условимся искать только все неравные между собой фигуры, удовлетворяющие условию задачи. Можно сказать, что задачи этого рода решаются «с точностью до равенства». Это означает, что задача считается решённой, если: 1) Построено некоторое число неравных между собой фигур Ф1, Ф2, … Фn, удовлетворяющие условиям задачи, и 2) доказано, что всякая фигура, удовлетворяющая условиям задачи, равна одной из этих фигур. При этом считается, что задача имеет n различных решений.

Рассмотрим теперь задачу несколько иного содержания: построить треугольник так, чтобы одной его стороной служил данный отрезок ВС, другая сторона была равна другому данному отрезку l, а угол между ними был равен данному углу α.

В этом случае условие задачи предусматривает определённое расположение искомого треугольника относительно одной из данных фигур (именно относительно отрезка ВС). В связи с этим мы иначе смотрим на вопрос о построении всех решений этой задачи. Как видно из рисунка 5, может существовать до четырёх треугольников, удовлетворяющих условию этой задачи. Они равны между собой, но по разному расположены относительно данной фигуры ВС. В этом случае полное решение задачи предусматривает построение всех этих треугольников. Считается, что задача имеет до четырёх различных решений, различающихся своим расположением относительно данной фигуры.

Итак, если условие задачи предусматривает определённое расположение искомой фигуры относительно какой-либо данной фигуры, то полное решение состоит в построении всех фигур, удовлетворяющих условию задачи (если такие фигуры существуют в конечном числе.

Date: 2015-07-22; view: 475; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию