Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Амплитудно-частотная характеристика, полоса пропускания и затухание





Степень искажения синусоидальных сигналов линиями связи оценивается с помо­щью таких характеристик, как амплитудно-частотная характеристика, полоса про­пускания и затухание на определенной частоте.

Амплитудно-частотная характеристика (рис. 2.7) показывает, как затухает ам­плитуда синусоиды на выходе линии связи по сравнению с амплитудой на ее входе для всех возможных частот передаваемого сигнала. Вместо амплитуды в этой ха­рактеристике часто используют также такой параметр сигнала, как его мощность.

Знание амплитудно-частотной характеристики реальной линии позволяет оп­ределить форму выходного сигнала практически для любого входного сигнала. Для этого необходимо найти спектр входного сигнала, преобразовать амплитуду со­ставляющих его гармоник в соответствии с амплитудно-частотной характеристи­кой, а затем найти форму выходного сигнала, сложив преобразованные гармоники.

Несмотря на полноту информации, предоставляемой амплитудно-частотной ха­рактеристикой о линии связи, ее использование осложняется тем обстоятельством, что получить ее весьма трудно. Ведь для этого нужно провести тестирование ли­нии эталонными синусоидами по всему диапазону частот от нуля до некоторого максимального значения, которое может встретиться во входных сигналах. При­чем менять частоту входных синусоид нужно с небольшим шагом, а значит, коли­чество экспериментов должно быть очень большим. Поэтому на практике вместо амплитудно-частотной характеристики применяются другие, упрощенные характеристики - полоса пропускания и затухание.

Полоса пропускания (bandwidth) — это непрерывный диапазон частот, для кото­рого отношение амплитуды выходного сигнала ко входному превышает некоторый заранее заданный предел, обычно 0,5. То есть полоса пропускания определяет диа­пазон частот синусоидального сигнала, при которых этот сигнал передается по линии связи без значительных искажений. Знание полосы пропускания позволяет получить с некоторой степенью приближения тот же результат, что и знание амп­литудно-частотной характеристики. Как мы увидим ниже, ширина полосы пропус­кания в наибольшей степени влияет на максимально возможную скорость передачи информации по линии связи. Именно этот факт нашел отражение в английском эквиваленте рассматриваемого термина (width — ширина).

Затухание (attenuation) определяется как относительное уменьшение ампли­туды или мощности сигнала при передаче по линии сигнала определенной частоты. Таким образом, затухание представляет собой одну точку из амплитудно-частот­ной характеристики линии. Часто при эксплуатации линии заранее известна ос­новная частота передаваемого сигнала, то есть та частота, гармоника которой имеет наибольшую амплитуду и мощность. Поэтому достаточно знать затухание на этой частоте, чтобы приблизительно оценить искажения передаваемых по ли­нии сигналов. Более точные оценки возможны при знании затухания на несколь­ких частотах, соответствующих нескольким основным гармоникам передаваемого сигнала.

Затухание А обычно измеряется в децибелах (дБ, decibel — dB) и вычисляется последующей формуле:

где Рвых — мощность сигнала на выходе линии, Рвх — мощность сигнала на входе линии.

Так как мощность выходного сигнала кабеля без промежуточных усилителей всегда меньше, чем мощность входного сигнала, затухание кабеля всегда является отрицательной величиной.

Например, кабель на витой паре категории 5 характеризуется затуханием не ниже -23,6 дБ для частоты 100 МГц при длине кабеля 100 м. Частота 100 МГц выбрана потому, что кабель этой категории предназначен для высокоскоростной передачи данных, сигналы которых имеют значимые гармоники с частотой примерно 100 МГц. Кабель категории 3 предназначен для низкоскоростной передачи данных, поэтому для него определяется затухание на частоте 10 МГц (не ниже -11,5 дБ). Часто опе­рируют с абсолютными значениями затухания, без указания знака.

Абсолютный уровень мощности, например уровень мощности передатчика, также измеряется в децибелах. При этом в качестве базового значения мощности сигнала, относительно которого измеряется текущая мощность, принимается зна­чение в 1 мВт. Таким образом, уровень мощности р вычисляется по следующей формуле:

где Р — мощность сигнала в милливаттах, а дБм (dBm) — это единица измерения уровня мощности (децибел на 1 мВт).

Таким образом, амплитудно-частотная характеристика, полоса пропускания и затухание являются универсальными характеристиками, и их знание позволяет сделать вывод о том, как через линию связи будут передаваться сигналы любой формы.

Полоса пропускания зависит от типа линии и ее протяженности. На рис. 2.8 по­
казаны полосы пропускания линий связи различных типов, а также наиболее часто
используемые в технике связи частотные диапазоны;

Пропускная способность линии

Пропускная способность (throughput) линии характеризует максимально возмож­ную скорость передачи данных по линии связи. Пропускная способность измеря­ется в битах в секунду — бит/с, а также в производных единицах, таких как килобит в секунду (Кбит/с), мегабит в секунду (Мбит/с), гигабит в секунду (Гбит/с) и т. д.

ПРИМЕЧАНИЕ Пропускная способность линий связи и коммуникационного сетевого оборудования традиционно изме­ряется в битах в секунду, а не в байтах в секунду. Это связано с тем, что данные в сетях передаются
последовательно, то есть побитно, а не параллельно, байтами, как это происходит между устройствами внутри компьютера. Такие единицы измерения, как килобит, мегабит или гигабит, в сетевых технологиях строго
соответствуют аепеням 10 (то еаь килобит - это 1000 бит, а мегабит - это 1 000 000 бит), как это принято
во всех отраслях науки и техники, а не близким к этим числам степеням 2, как это принято в программировании,
где приставка «кило» равна 210 =1024, а «мега» - 220= 1 048 576.

 

Пропускная способность линии связи зависит не только от ее характеристик, таких как амплитудно-частотная характеристика, но и от спектра передаваемых сигналов. Если значимые гармоники сигнала (то есть те гармоники, амплитуды которых вносят основной вклад в результирующий сигнал) попадают в полосу пропускания линии, то такой сигнал будет хорошо передаваться данной линией связи и приемник сможет правильно распознать информацию, отправленную по линии передатчиком (рис. 2.9, а). Если же значимые гармоники выходят за грани­цы полосы пропускания линии связи, то сигнал будет значительно искажаться, приемник будет ошибаться при распознавании информации, а значит, информа­ция не сможет передаваться с заданной пропускной способностью (рис. 2.9, 6).

Выбор способа представления дискретной информации в виде сигналов, пода­ваемых на линию связи, называется физическим или линейным кодированием. От выбранного способа кодирования зависит спектр сигналов и, соответственно, пропускная способность линии. Таким образом, для одного способа кодирования линия может обладать одной пропускной способностью, а для другого — другой. Например, витая пара категории 3 может передавать данные с пропускной способ­ностью 10 Мбит/с при способе кодирования стандарта физического уровня 10Base-T и 33 Мбит/с при способе кодирования стандарта 100Base-T4. В примере, приве­денном на рис. 2.9, принят следующий способ кодирования — логическая 1 пред­ставлена на линии положительным потенциалом, а логический 0 — отрицательным.

Теория информации говорит, что любое различимое и непредсказуемое измене­ние принимаемого сигнала несет в себе информацию. В соответствии с этим прием синусоиды, у которой амплитуда, фаза и частота остаются неизменными, инфор­мации не несет, так как изменение сигнала хотя и происходит, но является хорошо предсказуемым. Аналогично, не несут в себе информации импульсы на тактовой шине компьютера, так как их изменения также постоянны во времени. А вот им­пульсы на шине данных предсказать заранее нельзя, поэтому они переносят ин­формацию между отдельными блоками или устройствами.

Большинство способов кодирования используют изменение какого-либо пара­метра периодического сигнала — частоты, амплитуды и фазы синусоиды или же знак потенциала последовательности импульсов. Периодический сигнал, парамет­ры которого изменяются, называют несущим сигналом или несущей частотой, если в качестве такого сигнала используется синусоида.

Если сигнал изменяется так, что можно различить только два его состояния, то любое его изменение будет соответствовать наименьшей единице информации — биту. Если же сигнал может иметь более двух различимых состояний, то любое его изменение будет нести несколько бит информации.

Количество изменений информационного параметра несущего периодического сигнала в секунду измеряется в бодах (baud). Период времени между соседними изменениями информационного сигнала называется тактом работы передатчика.

Пропускная способность линии в битах в секунду в общем случае не совпадает с числом бод. Она может быть как выше, так и ниже числа бод, и это соотношение зависит от способа кодирования.

Если сигнал имеет более двух различимых состояний, то пропускная способность в битах в секунду будет выше, чем число бод. Например, если информационными параметрами являются фаза и амплитуда синусоиды, причем различаются 4 состоя­ния фазы в 0, 90,180 и 270 градусов и два значения амплитуды сигнала, то инфор­мационный сигнал может иметь 8 различимых состояний. В этом случае модем, работающий со скоростью 2400 бод (с тактовой частотой 2400 Гц) передает инфор­мацию со скоростью 7200 бит/с, так как при одном изменении сигнала передается 3 бита информации.

При использовании сигналов с двумя различимыми состояниями может наблю­даться обратная картина. Это часто происходит потому, что для надежного распозна­вания приемником пользовательской информации каждый бит в последовательности кодируется с помощью нескольких изменений информационного параметра несущего сигнала. Например, при кодировании единичного значения бита импульсом поло­жительной полярности, а нулевого значения бита — импульсом отрицательной поляр­ности физический сигнал дважды изменяет свое состояние при передаче каждого бита. При таком кодировании пропускная способность линии в два раза ниже, чем число бод, передаваемое по линии.

На пропускную способность линии оказывает влияние не только физическое, но и логическое кодирование. Логическое кодирование выполняется до физического кодирования и подразумевает замену бит исходной информации новой последова­тельностью бит, несущей ту же информацию, но обладающей, кроме этого, до­полнительными свойствами, например возможностью для приемной стороны обнаруживать ошибки в принятых данных. Сопровождение каждого байта исход­ной информации одним битом четности — это пример очень часто применяемого способа логического кодирования при передаче данных с помощью модемов. Дру­гим примером логического кодирования может служить шифрация данных, обес­печивающая их конфиденциальность при передаче через общественные каналы связи. При логическом кодировании чаще всего исходная последовательность бит заме­няется более длинной последовательностью, поэтому пропускная способность ка­нала по отношению к полезной информации при этом уменьшается.

 

Date: 2015-07-10; view: 1280; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию