Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Свойства нормы





1.

2.

3. [косинус угла]

4.

5. [аксиома 1]

25. Ортогона́льная систе́ма элементов векторного пространства со скалярным произведением — такое подмножество векторов , что любые различные два из них ортогональны, то есть их скалярное произведение равно нулю:

ij) = 0.

Ортогональная система в случае её полноты может быть использована в качестве базиса пространства. При этом разложение любого элемента может быть вычислено по формулам: , где .

Любая полная линейно независимая система в конечномерном пространстве является базисом. От простого базиса, следовательно, можно перейти к ортонормированному базису.

Ортогональный (ортонормированный) базис — ортогональная (ортонормированная) система элементов линейного пространствасо скалярным произведением, обладающая свойством полноты.

Ортонормированный базис удовлетворяет еще и условию единичности нормы всех его элементов. То есть это ортогональный базис с нормированными элементами.

Последнее удобно записывается при помощи символа Кронекера:

то есть скалярное произведение каждой пары базисных векторов равно нулю, когда они не совпадают (), и равно единице при совпадающем индексе, то есть когда берется скалярное произведение любого базисного вектора с самим собой.

Процесс Грама (англ.) ― Шмидта — это один из алгоритмов, в которых на основе счётного множества линейно независимыхвекторов строится множество ортогональных векторов или ортонормированных векторов, причём так, что каждый вектор или может быть выражен линейной комбинацией векторов.Алгоритм

Пусть имеются линейно независимые векторы .

Определим оператор проекции следующим образом:

где — скалярное произведение векторов и . Этот оператор проецирует вектор ортогонально на вектор .

Классический процесс Грама — Шмидта выполняется следующим образом:

На основе каждого вектора может быть получен нормированный вектор: (у нормированного вектора направление будет таким же, как у исходного, а длина — единичной).

Результаты процесса Грама — Шмидта:

— система ортогональных векторов либо

— система ортонормированных векторов.

Вычисление носит название ортогонализации Грама — Шмидта, а — ортонормализации Грама — Шмидта.

26. Лине́йный опера́тор — обобщение линейной числовой функции (точнее, функции y = kx) на случай более общего множества аргументов и значений. Лине́йным отображе́нием векторного пространства LK над полем K в векторное пространство MK (лине́йным опера́тором из LK в MK) над тем же полем K называется отображение

,

удовлетворяющее условию линейности

f (x + y) = f (x) + f (y),

fx) = α f (x).

для всех и .

Матрица линейного оператора — матрица, выражающая линейный оператор в некотором базисе. Для того, чтобы ее получить, необходимо подействовать оператором на векторы базиса и координаты полученных векторов (образов базисных векторов) записать в столбцы матрицы.

Матрица оператора аналогична координатам вектора. При этом действие оператора на вектор равносильно умножению матрицы на столбец координат этого вектора в том же базисе.

Выберем базис . Пусть — произвольный вектор. Тогда его можно разложить по этому базису:

,

где xk — координаты вектора в выбранном базисе.

Здесь и далее предполагается суммирование по немым индексам.

Пусть — произвольный линейный оператор. Подействуем им на обе стороны предыдущего равенства, получим

.

Вектора также разложим в выбранном базисе, получим

,

где j -я координата k -го вектора из .

Подставим разложение в предыдущую формулу, получим

.

Выражение , заключённое в скобки, есть ни что иное, как формула умножения матрицы на столбец, и, таким образом, матрица при умножении на столбец xk даёт в результате координаты вектора , возникшего от действия оператора на вектор , что и требовалось получить.

Комментарий: Если в полученной матрице поменять местами пару столбцов или строк, то мы, вообще говоря, получим уже другую матрицу, соответствующую тому же набору базисных элементов . Иными словами, порядок базисных элементов предполагается жёстко упорядоченным.

Date: 2015-07-02; view: 543; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию