Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Локализация функций в коре большого мозга





Вопрос относительно локализации функций в коре большого мозга воз­ник давно. Впервые поставил его венский врач нейроморфолог Ф.Й. Галль (1822). Он обратил внимание на то, что конфигурация черепа у разных лю­дей неодинаковая. По его мнению, это зависит от степени развития тех или иных участков коры, которые оказывают влияние на структуру черепа и приводят к появлению на нем выпуклостей и впадин. По этим изменениям черепа Галль старался определить умственные возможности, способности и склонности человека.

Учение Галля было, конечно, ошибочным. Оно предусматривало грубую локализацию сложных психических процессов в коре большого мозга. Ведь известно, что эти процессы протекают диффузно.

На смену концепции локализационного психоморфологизма Галля было принято положение, сформулированное французскими физиологами Ф. Мажанди и М.Ж.П. Флурансом (1825), что кора большого мозга функци­онирует как единое целое и что функциональной локализации внутри коры не существует. Так возникла теория эквипотенциальности, равнозначности разных участков коры. Она не только опровергла примитивные взгляды Галля, но и отрицала его правильную мысль о возможности локализации функций в коре, необходимость ее изучения.

До 1860 г. считали, что кора большого мозга - функционально однород­на и поливалентна и выполняет только функцию мышления. Вскоре были получены многочисленные доказательства как клиницистов, так и физиоло­гов относительно локализации различных функций в коре большого мозга.

Наиболее детально были изучены специализированные участки мозга, связанные с речевой функцией. В 1861 г. французский анатом П. Брока пока­зал, что поражение задней трети нижней лобной извилины левого полушария мозга предопределяет расстройства речи - моторную афазию. Позднее этот участок был назван центром (зоной) Брока. В 1874 г. немецкий исследователь К. Вернике описал второй тип афазии - сенсорную. Она связана с поражени­ем другого участка коры, который также находится в левом полушарии мозга в задней трети верхней височной извилины. Этот участок теперь называют центром (зоной) Вернике. Позднее было установлено, что центры Вернике и Брока соединяются группой нервных волокон - дугообразным пучком.

Большое значение имело открытие А. Фритчем и Э. Гитцигом в 1870 г. участков коры, раздражение которых в эксперименте на животных вызывало двигательный эффект, т. е. было подтверждено, что в коре большого мозга размещены двигательные центры. После этих работ большой интерес вы­звали сообщения Г. Мунка, В.М. Бехтерева о том, что в коре большого мозга имеются не только двигательные центры, но и участки, связанные со зрени­ем, слухом, обонянием, вкусом, общей чувствительностью кожи. Одновре­менно многочисленные работы клиницистов подтверждали факт существо­вания функциональной локализации в головном мозге человека. Г. Флексиг отметил ведущую роль передних частей лобных долей и нижней теменной извилины в течении психических процессов.

В 1874 г. проф. В.М. Бец открыл в двигательной коре обезьяны и чело­века особую группу гигантских пирамидных нейронов, которые образуют проводящие пути между моторной корой и спинным мозгом. Теперь эти ги­гантские клетки называют клетками Беца.

Так возникло учение об узкой локализации функций в коре большого моз­га, которое получило твердую фактическую основу, морфологическую базу.

Концепция локализационизма на определенном этапе развития науки была прогрессивной по сравнению со взглядами эквипотенциалистов. Она предусматривала возможность локализовать в коре большого мозга значи­тельное количество функциональных нарушений. Но надежды, связанные с этими важными открытиями в неврологии, оправдались далеко не полно­стью. Более того, в дальнейшем эта концепция начала тормозить развитие науки, что послужило причиной усиленной критики теории узкой локализа­ции функций. Дальнейшие наблюдения показали, что высшие психические функции локализованы в коре большого мозга, но их локализация не имеет четких границ. Они нарушались при поражении различных, значительно от­даленных один от другого участков коры.

Какой же точки зрения мы должны придерживаться в этом вопросе те­перь? Современная концепция о локализации функций в коре большого мозга несовместима как с теорией узкого локализационизма, так и с пред­ставлениями о равноценности (эквипотенциальности) разных образований мозга. В вопросе о локализации функций в коре большого мозга отечествен­ная неврология выходит из учения И.П. Павлова о динамической локализа­ции функций. На основании экспериментальных исследований И.П. Павлов показал, что кора большого мозга представлена совокупностью анализа­торов, где каждый из них имеет центральную зону - ядро анализатора и периферическую, где корковое представительство является рассеянным. Вследствие такой структуры анализатора корковые зоны его как бы пере­крывают одна другую и образуют тесно связанное морфофункциональное объединение. Динамическая локализация функций в коре предусматривает возможность использования одних и тех же структур мозга для обеспечения разных функций. Это означает, что в выполнении той или другой функции принимают участие разные отделы коры большого мозга. Например, такие высшие психические процессы, как речь, письмо, чтение, счет и т.п., никогда не осуществляются одним изолированным центром, а опираются на слож­ную систему совместно функционирующих зон головного мозга. Динамиче­ская локализация функций не исключает наличие центров в коре большого мозга, но их функция определяется связями с другими участками коры.

Необходимо отметить, что степень локализованности нкций коры неодинаковая. Только элементарные корковые функции, которые обе­спечиваются отдельными анализаторами, первичными рецепторными ап­паратами, можно связать с соответствующими участками коры. Сложные, филогенетически молодые функции не могут быть узко локализованными; в их осуществлении участвуют большие участки коры большого мозга или даже кора в целом.

Дальнейшее развитие учения о динамической локализации функций в коре получило в работах П.К. Анохина (1955), который сформулировал концепцию функциональных систем высших мозговых функций. В соот­ветствии с современными представлениями функциональная система име­ет сложное иерархическое строение. Она включает в разных соединениях корковые, подкорковые центры, проводящие пути, исполнительные органы. Причем одни и те же нервные образования могут быть составными разных функциональных систем. Непосредственно та или другая высшая мозговая функция реализуется благодаря сложному, упорядоченному, динамическо­му взаимодействию разных систем мозга.

Значительный вклад в понимание функциональной организации коры большого мозга внесли исследования канадского нейрохирурга У. Пен-фильда (1964), проведенные во время оперативного вмешательства на мозге человека. Основным принципом функциональной организации проекци­онных систем в коре является принцип топической локализации, которая основывается на четких анатомических связях между отдельными воспри­нимающими элементами периферии и корковыми клетками проекционных зон. В каждой из этих систем анализаторов в зависимости от отношения разных участков коры к другим образованиям мозга различают три типа корковых нолей (Г.И. Поляков, 1973).

Первичные проекционные поля отвечают тем архитектоническим участкам, в которых локализуются корковые отделы анализаторов: анализатора общей чувствительности - в постцентральной извилине, обонятельного и слухово­го в височной доле, зрительного в затылочной. С этими полями связаны простые, элементарные функции: общая чувствительность кожи, слух, обоня­ние, зрение. Это поля, которые не могут обеспечить интегративную функцию восприятия, они лишь реагируют на определенные раздражения одной модаль­ности и не отвечают на раздражение другой. В первичных проекционных полях самыми развитыми являются нейроны IV афферентного слоя. Для первичных проекционных полей характерен соматотопический принцип строения, т. е. представительство чувствительных функций в определенных зонах коры.

Вторичные проекционные поля расположены вокруг первичных. Они непосредственно не связаны со специфическими проводящими путями. Во вторичных корковых полях преобладают нейроны второго и третьего слоев коры; здесь имеется большое количество мультисенсорных нейронов, ко­торые обеспечивают, по сравнению с первичными полями, другой характер реагирования. Электрическое раздражение вторичных проекционных по­лей вызывает у человека сложные зрительные образы, мелодии, в отличие от элементарных ощущений (вспышка, звук), которые возникают в случае раздражения первичных полей. Во вторичных проекционных полях про­исходит высший анализ и синтез, более подробная обработка информации, осознание ее.

Вторичные проекционные поля вместе с первичными составляют цен­тральную часть анализатора, или его ядро. Взаимодействие нейронов этих зон носит сложный, неоднозначный характер, и в условиях нормальной дея­тельности мозга оно основывается на последовательном изменении возбу­дительных и тормозных процессов в соответствии с характером конечного результата. Это и обеспечивает динамические свойства локализации.

Описанная функциональная организация коры в виде четко разделен­ных по принципу модальной специфичности полей в наибольшей мере вы­ражена у человека и высших представителей животного мира. В частности, у человека вторичные проекционные поля составляют около 50 % всей коры большого мозга (у обезьян - около 20 %).

Третичные проекционные поля — это ассоциативные зоны, которые раз­мещены в местах перекрывания отдельных анализаторов. Различают две основных ассоциативных зоны: в лобной доле перед прецентральной изви­линой и на границе между вторичными проекционными полями теменной, затылочной и височной долей.

Третичные проекционные поля, или зоны перекрытия, не связаны непо­средственно с периферическими рецепторными аппаратами, но они тесно связаны с другими участками коры, в том числе и с проекционными полями. Сюда поступают также сигналы от ассоциативных ядер таламуса.

В коре большого мозга, в особенности в участке ассоциативных зон, нейроны размещены по типу функциональных колонок. Колончастая орга­низация зон коры характеризуется вертикальным расположением нейрон­ных элементов (колонки) с подобными функциональными свойствами. Это означает, что все шесть слоев клеток коры ассоциативных зон, которые ле­жат перпендикулярно к ее поверхности, принимают участие в переработке сенсорной информации, которая поступает от периферических рецепторов. Большая часть нейронов третичных зон имеет мультимодальные свойства. Они обеспечивают интеграцию сигналов, которые поступают от различных анализаторов. Здесь завершается формирование соответствующих чувств, осуществляются сложные аналитико-синтетические функции.

Третичные проекционные поля имеют непосредственное отношение к высшим психическим функциям. С функцией этих зон связаны процессы обучения и памяти. Они присущи только мозгу человека.

Сенсорные зоны коры большого мозга тесно связаны с моторными зона­ми, которые расположены перед центральной бороздой. Вместе они образу­ют единое сенсомоторное поле. В моторной коре также различают первич­ную, вторичную и третичную зоны.

Первичная моторная зона коры (поле 4) расположена непосредственно перед роландовой бороздой. Это прецентральная извилина, с 5-го слоя кото­рой берет начало пирамидный путь, который соединяет кору большого моз­га с клетками передних рогов спинного мозга. Как и соматосенсорная зона, она имеет четкую соматотопическую организацию. Почти 50 % поверхности этой зоны у человека имеют представительство верхние конечности и мыш­цы лица, губ, языка, учитывая важность функции, которую они выполняют (тонкие движения, речь).

Вторичная моторная зона коры - премоторная (поле 6), размещена впе­реди первичной зоны коры и в глубине сильвиевой борозды. Эта зона коры вместе с первичной моторной зоной, подкорковыми ядрами и таламусом ру­ководит многими более сложными движениями.

Третичная моторная зона коры охватывает передние отделы лобных долей (префронтальная область). Нейроны этой корковой зоны получают многочисленные импульсы, которые поступают от сенсомоторной коры, зрительной, слуховой зон коры, таламуса, а также от подкорковых ядер и других структур. Эта зона обеспечивает интеграцию всех информационных процессов, формирование планов и программы действий, контролирует са­мые сложные формы поведения человека.

Первичные сенсорные и моторные зоны коры связаны преимуществен­но с противоположной половиной тела. Вследствие такой организации кон-тралатеральных связей сенсорные и моторные функции обоих полушарий большого мозга и у человека, и у животных симметричные.

Что касается вторичных и третичных зон коры, то они разные в правом и левом полушариях мозга. Это означает, что распределение более спе­циализированных функций совсем другое асимметричное. Считают, что с осложнением мозговой функции возрастает тенденция к определенной латерализации в ее распределении. Развитие латерализации полушарных центров является отличительной особенностью мозга человека.

В осуществлении функций коры большого мозга значительная роль при­надлежит процессам возбуждения и торможения в центральной нервной системе. Возбуждение связано с возникновением в нейроне временной де­поляризации. Возбудительными медиаторами могут быть разные вещества: норадреналин, дофамин, серотонин. Важное значение имеют производные глутаминовой кислоты (глутаматы), субстанция Р. Торможение в коре большого мозга осуществляется тормозными интернейронами. Основным медиатором коркового торможения является ГАМ К. Перенапряжение про­цессов возбуждения и торможения приводит к появлению застойных очагов, срыву корковой деятельности и возникновению патологических состояний.

Существенное значение имеют также процессы выборочного торможе­ния, которое играет решающую роль в обеспечении направленности потоков нервных импульсов. На уровне коры большого мозга оно регулирует соот­ношение между симметричными центрами обоих полушарий. Кроме того, коллатерали аксонов пирамидных клеток через вставные тормозные клет­ки Рэншоу оказывают тормозное влияние на сопредельные нейроны. Это ограничивает уровень возбуждения коры большого мозга, предотвращает в норме возникновение эпилептической активности в мозге. Поскольку один нейрон центральной нервной системы имеет связь с многими десятками и сотнями нервных волокон от разных участков, возникает чрезвычайно слож­ное сочетание тормозных и возбудительных импульсов, которые существен­ным образом влияют на функциональное состояние нейронов мозга. Благо­даря конвергентно-дивергентной организации нервной системы подобные специфические колебания и соответствующее распределение возбуждения и торможения возникают одновременно в корковых и подкорковых ней­ронах мозга. Это создает основу для интегративной деятельности мозга, с которой связаны высшие психические функции: восприятие, познавание, память, состояние сознания.

Date: 2015-07-02; view: 495; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию