Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Суперпозиция волн





7.20. Имеются два источника, совершающие колебания в одина­ковой фазе и возбуждающие в окружающей среде плоские волны одинаковой частоты и амплитуды (A1=A2=1 мм). Найти амплитуду А колебаний точки среды, отстоящей от одного источника колеба­ний на расстоянии x 1=3,5 м и от другого — на x 2=5,4 м. Направ­ления колебаний в рассматриваемой точке совпадают. Длина волны l=0,6 м.

 

* В задачах, где в условии не указана скорость звука и не заданы вели­чины, по которым ее можно вычислить, значение скорости следует брать из табл. 16.

7.21. Стоячая волна образуется при наложении бегущей волны и волны, отраженной от границы раздела сред, перпендикулярной направлению распространения волны. Найти положения (расстоя­ния от границы раздела сред) узлов и пучностей стоячей волны, если отражение происходит: 1) от среды менее плотной; 2) от среды более плотной. Скорость J распространения звуковых колебаний равна 340 м/с и частота v =3,4 кГц.

7.22. Определить длину l бегущей волны, если в стоячей волне расстояние l между: 1) первой и седьмой пучностями равно 15 см; 2) первым и четвертым узлом равно 15 cм

7.23. В трубе длиной l =1,2 м находится воздух при температуре T =300 К. Определить минимальную частоту v min возможных коле­баний воздушного столба в двух случаях: 1) труба открыта; 2) труба закрыта.

7.24. Широкая трубка, закрытая снизу и расположенная верти­кально, наполнена до краев водой. Над верхним отверстием трубки помещен звучащий камертон, частота v колебаний которого равна 440 Гц. Через кран, находящийся внизу, воду медленно выпускают. Когда уровень воды в трубке понижается на DH=19,5 см, звук камертона усиливается. Определить скорость J звука в условиях опыта.

Рис. 7.4

7.25. Один из способов измерения скорости звука состоит в сле­дующем. В широкой трубке A может перемещаться поршень В. Перед открытым концом трубки A, соединенным с помощью рези­новой трубки с ухом наблюдателя, расположен звучащий камертон К. (рис. 7.4.). Отодвигая поршень В от конца трубки A, наблюдатель отмечает ряд следующих друг за другом увеличении и уменьшении громкости звука. Найти скорость J звука в воздухе, если при часто­те колебаний v =440 Гц двум последовательным усилениям интен­сивности звука соответствует расстояние D l между положениями поршня, равное 0,375 м.

7.26. На рис. 7.5 изображен прибор, служащий для определения скорости звука в твердых телах и газах. В латунном стержне А, зажатом посередине, возбуж­даются колебания. При опре­деленном положении легкого кружочка

Рис. 7.5

В, закрепленного на конце стержня, пробковый порошок, находящийся в трубке С, расположится в виде небольших кучек на рав­ных расстояниях. Найти скорость J звука в латуни, если расстоя­ние и между кучками оказалось равным 8,5 см. Длина стержня l =0,8 м.

7.27. Стальной стержень длиной l= 1 м, закрепленный посереди­не, натирают суконкой, посыпанной канифолью. Определить часто­ту v возникающих при этом собственных продольных колебаний стержня. Скорость J продольных волн в стали вычислить.

Эффект Доплера *

7.28. Поезд проходит мимо станции со скоростью u =40 м/с. Частота v 0 тона гудка электровоза равна 300 Гц. Определить кажу­щуюся частоту v тона для человека, стоящего на платформе, в двух случаях: 1) поезд приближается; 2) поезд удаляется.

7.29. Мимо неподвижного электровоза, гудок которого дает сигнал частотой v 0=300 Гц, проезжает поезд со скоростью и =40 м/с. Какова кажущаяся частота v тона для пассажира, когда поезд приближается к электровозу? когда удаляется от него?

7.30. Мимо железнодорожной платформы проходит электропо­езд. Наблюдатель, стоящий на платформе, слышит звук сирены поезда. Когда поезд приближается, кажущаяся частота звука v 1=1100 Гц; когда удаляется, кажущаяся частота v 2=900 Гц. Найти скорость и электровоза и частоту v 0 звука, издаваемого сиреной.

7.31. Когда поезд проходит мимо неподвижного наблюдателя, высота тона звукового сигнала меняется скачком. Определить отно­сительное изменение частоты D v / v, если скорость и поезда равна 54 км/ч.

7.32. Резонатор и источник звука частотой v 0=8 кГц расположе­ны на одной прямой. Резонатор настроен на длину волны l=4,2 см и установлен неподвижно. Источник звука может перемещаться по направляющим вдоль прямой. С какой скоростью u и в каком направлении должен двигаться источник звука, чтобы возбуждае­мые им звуковые волны вызвали колебания резонатора?

7.33. Поезд движется со скоростью u =120 км/ч. Он дает свисток длительностью t0=5 с. Какова будет кажущаяся продолжитель­ность t свистка для неподвижного наблюдателя, если: 1) поезд приближается к нему; 2) удаляется? Принять скорость звука рав­ной 348 м/с.

* См. сноску на с. 108

7.34. Скорый поезд приближается к стоящему на путях электро­поезду со скоростью и =72 км/ч. Электропоезд подает звуковой сигнал частотой v 0=0,6 кГц. Определить кажущуюся частоту v звукового сигнала, воспринимаемого машинистом скорого поезда.

7.35. На шоссе сближаются две автомашины со скоростями u 1=30 м/с и u 2=20 м/с. Первая из них подает звуковой сигнал час­тотой v 1=600 Гц. Найти кажущуюся частоту v 2 звука, восприни­маемого водителем второй автомашины, в двух случаях: 1) до встре­чи; 2) после встречи. Изменится ли ответ (если изменится, то как) в случае подачи сигнала второй машиной?

7.36, Узкий пучок ультразвуковых волн частотой v 0=50 кГц направлен от неподвижноголокатора к приближающейся подводной лодке. Определить скорость и подводной лодки, если частота v 1 биений (разность частот колебаний источника и сигнала, отраженно­го от лодки) равна 250 Гц. Скорость J ультразвука в морской воде принять равной 1,5 км/с.

Энергия звуковых волн *

7.37. По цилиндрической трубе диаметром d=20 см и длиной l =5 м, заполненной сухим воздухом, распространяется звуковая волна средней за период интенсивностью I =50 мВт/м2. Найти энергию W звукового поля, заключенного в трубе.

7.38. Интенсивность звука 1= 1 Вт/м2. Определить среднюю объ­емную плотность <w> энергии звуковой волны, если звук распро­страняется в сухом воздухе при нормальных условиях.

7.39. Мощность N изотропного точечного источника звуковых волн равна 10 Вт. Какова средняя объемная плотность <w> энер­гии на расстоянии г=10 м от источника волн? Температуру Т воздуха принять равной 250 К.

7.40. Найти мощность N точечного изотропного источника звука, если на расстоянии r=25 м от него интенсивность I звука равна 20 мВт/м2. Какова средняя объемная плотность <w> энергии на этом расстоянии?

 

Звуковое давление. Акустическое сопротивление *

7.41. Определить удельное акустическое сопротивление Zs воз­духа при нормальных условиях.

7.42. Определить удельное акустическое сопротивление Zs воды при температуре t=15°C.

 

*См. сноску на с. 108

 

7.43. Какова максимальная скорость колебательного дви­жения частиц кислорода, через который проходят звуковые волны, если амплитуда звукового давления p 0=0,2 Па, температура Т кислорода равна 300 К и давление p =100 кПа?

7.44. Определить акустическое сопротивление Za воздуха в тру­бе диаметром d =20см при температуре T =300 К и давлении p =200 кПа.

7.45. Звук частотой v =400 Гц распространяется в азоте при тем­пературе T =290 К и давлении p =104 кПа. Амплитуда звукового давления p 0=0,5 Па. Определить амплитуду А колебаний частиц азота.

7.46. Определить амплитуду p 0 звукового давления, если ампли­туда А колебаний частиц воздуха равна 1 мкм. Частота звука v =600 Гц.

7.47. На расстоянии r=100 м от точечного изотропного источни­ка звука амплитуда звукового давления r0=0,2 Па. Определить мощность P источника, если удельное акустическое сопротивление Zs воздуха равно 420 Па×с/м. Поглощение звука в воздухе не учи­тывать.

7.48. Источник звука небольших линейных размеров имеет мощ­ность Р =1 Вт. Найти амплитуду звукового давления p 0 на расстоя­нии r =100 м от источника звука, считая его изотропным. Затуха­нием звука пренебречь.

7.49. В сухом воздухе при нормальных условиях интенсивность I звука равна 10пВт/м2. Определить удельное акустическое сопро­тивлениеZs воздуха при данных условиях и амплитуду p 0 звуково­го давления.

7.50. Найти интенсивности I 1 и I 2 звука, соответствующие амп­литудам звукового давления p 01=700 мкПа и p 02=40 мкПа.

 

Уровень интенсивности, и уровень громкости звука

 

7.51. Определить уровень интенсивности Lр звука, если его интенсивность равна: 1) 100 пВт/м2; 2) 10 мВт/м2.

7.52. На расстоянии r1=24 м от точечного изотропного источни­ка звука уровень его интенсивности Lр=32 дБ. Найти уровень интенсивности Lр звука этого источника на расстоянии r2=16 м.

7.53. Звуковая волна прошла через перегородку, вследствие чего уровень интенсивности Lр звука уменьшился на 30 дБ. Во сколько раз уменьшилась интенсивность I звука?

7.54. Уровень интенсивности Lр шума мотора равен 60 дБ. Каков будет уровень интенсивности, если одновременно будут ра­ботать: 1) два таких мотора; 2) десять таких моторов?

7.55. Три тона, частоты которых равны соответственно v 1=50 Гц, v 2=200 Гц и v 3=1кГц, имеют одинаковый уровень интен­сивности Lр=40 дБ. Определить уровни громкости LN этих тонов.

7.56. Звук частотой v =1 кГц имеет уровень интенсивности Lр=50 дБ. Пользуясь графиком на рис. 7.1, найти уровни интен­сивности равно громких с ним звуков с частотами: v 1=l кГц, v 2=5 кГц, v 3=2 кГц, v 4,=300 Гц, v 5 =50 Гц.

7.57. Уровень громкости тона частотой v =30 Гц сначала был LN1 =10 фон, а затем повысился до LN2=80 фон. Во сколько раз увеличилась интенсивность тона?

7.58. Пользуясь графиком уровней на рис. 7.1, найти уровень громкости LN звука, если частота v звука равна 2 кГц и амплитуда звукового давления r0=0,1 Па. Условия, при которых находится воздух, нормальные.

7.59. Для звука частотой v=2 кГц найти интенсивность I, уро­вень интенсивности Lр и уровень громкости LN, соответствующие: а) порогу слышимости; б) порогу болевого ощущения. При решении задачи пользоваться графиком на рис. 7.1.

7.60. Мощность Р точечного изотропного источника звука равна 100 мкВт. Найти уровень громкости LN при частоте v =500 Гц на расстоянии r =10 м от источника звука.

7.61. На расстоянии r =100 м от точечного изотропного источни­ка звука уровень громкости Lр, при частоте v =500 Гц равен 20 дБ. Определить мощность Р источника звука.

 

 

Date: 2015-06-11; view: 1011; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию