Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Линейная зависимость функций. Определитель Вронского





 

Перейдем к более глубокому изучению свойств векторного пространства решений уравнения (2). Мы установим ниже, что оно имеет размерность .

Определение. Пусть - функции, имеющие все производные до порядка включительно. Определителем Вронского функций называется величина (3).

Определение. Пусть определены ны интервале . Мы назовем их линейно зависимыми, если существуют постоянные , не все равные 0, такие, что для всех (4).

Функции, которые не являются линейно зависимыми, называются линейно независимыми. Линейная независимость означает, что из равенства (4) следует, что .

Теорема 5. Если - линейно зависимы и имеют производные до порядка включительно, то .

Доказательство. По условию, существуют не все равные 0 числа такие, что на выполняется тождество (5). Взяв производную от обеих частей, получим: (6). Аналогично, , (7) (8).

Рассмотрим произвольное . Равенства (5) – (8) можно рассматривать как систему линейных однородных уравнений относительно неизвестных . Поскольку эта система имеет нетривиальное решение (это означает, что не все равны 0), ее определитель должен быть равен 0, т.е. .

Обратная теорема в общем случае неверна. Рассмотрим, например, функции , для которых и их определитель Вронского тождественно равен 0.

Однако если , то при любом получаем , откуда , а при любом получаем , откуда . Поэтому функции и линейно независимы.

Тем не менее, верна следующая важная теорема.

Теорема 6. Если являются решением уравнения (2) и в некоторой точке , то линейно зависимы на (и, следовательно, ).

Доказательство. Рассмотрим систему линейных уравнений относительно неизвестных : (9). Ее определитель равен . По условию, . Значит, система (9) имеет нетривиальное решение . Рассмотрим функцию . По теореме 1, является решением уравнения (2). Равенства (9) можно рассматривать как условия задачи Коши, , которая, по теореме 1, имеет единственное решение. Вместе с тем, функция также удовлетворяет уравнению (2) и условиям (10). Ввиду единственности, . Таким образом, существуют не все равные 0 постоянные такие, что . Поэтому - линейно зависимы на . Следовательно, по теореме 5, на .

 

Date: 2016-07-05; view: 322; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию