Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Ортонормированные системы функций. Обобщенные ряды Фурье. Тригонометрические ряды Фурье. Теорема сходимости





 

Понятие об ортогональных системах функций. Начнем с определения ортогональных функций. Функции называются ортогональными на , если .

Термин “ортогональность” требует некоторых пояснений. Функции на отрезке образуют (бесконечномерное) векторное пространство (сумма функций и произведение функции на число – это снова функция). Рассмотрим для интегрируемых функций величину (1) и назовем нормой . Разумеется, это билинейная симметричная функция:

1. ;

2. ;

3. .

4. Кроме того, если рассматривать только непрерывные функции, из равенства следует, что на .

Действительно, если бы существовала точка такая, что , то, ввиду непрерывности существовало бы такое, что при для функции было бы справедливо неравенство . Но тогда .

Поэтому для непрерывных функций величина (1) представляет собой скалярное произведение.

Если рассмотреть более широкий класс, чем непрерывные функции, то свойство 4 уже не имеет места. Например, для отличной от тождественного нуля функции на выполняется равенство .

Однако, если - кусочная непрерывная функция, то можно доказать, что из равенства следует, что равна 0 всюду, кроме конечного числа точек, где она имеет устранимый разрыв.

Таким образом, величина (1) по своим свойствам близка к скалярному произведению.

Система функций - ортогональная на , если при . Система функций называется ортонормированной на , если .

Если рассмотреть символ Кронекера , определяемый так: , то условие ортонормированности можно записать так: .

Если ортогональная система функций не содержит функций с нулевой нормой, то система - ортонормированная.

Действительно, .

Обобщенные ряды Фурье. Пусть - ортогональная на система функций. Пусть представляет собой равномерно сходящийся на ряд . Найдем коэффициенты . Для этого вычислим (ввиду равномерной сходимости) (ввиду ортогональности) . Поэтому .

Однако коэффициент некоторой функции можно вычислять по этой формуле и без предположения о сходимости ряда . Этот коэффициент называется коэффициентом Фурье относительно системы , а ряд называется рядом Фурье функции . Мы пока не говорим о сходимости этого ряда к , а говорим лишь о том, что функции можно поставить в соответствие ее ряд Фурье, и записываем это так: .

Мы вернемся к этому важнейшему вопросу о сходимости немного позднее.

Тригонометрические ряды Фурье. Пусть отрезок имеет длину . Для определенности, пусть это отрезок . Рассмотрим следующую систему функций: .

Теорема. Рассматриваемая система функций является ортогональной.

Доказательство. Требуется доказать, что при и что при всех

Проверим первое из этих равенств. Остальные получаются совершенно аналогично. (т.к. .

Замечание. Легко вычислить, что на . Например, .

Предположим теперь, что определена на и периодически продолжена на всю числовую ось. Сопоставим ей ряд Фурье по тригонометрической системе: , где .

(Важнейший частный случай: , тогда тригонометрическая система имеет вид . Коэффициенты Фурье вычисляются по формулам и ряд Фурье, соответствующий , есть ).

Вернемся к вопросу о сходимости ряда Фурье.

Теорема. Пусть - периодическая функция (с периодом ), - кусочно непрерывны на (т.е. ограничены на этом промежутке и имеют не более чем конечное число точек разрыва, причем только первого рода). Тогда ее ряд Фурье: сходится при любом , причем , если - точка, где непрерывна. в точке разрыва (символы означают , соответственно).

Эта теорема приводится без доказательства ввиду его технической сложности (хотя это и одна из самых простых теорем о сходимости).

Рассмотрим особенности разложений в ряд Фурье, присущие четным и нечетным функциям.

Лемма. Если - четная интегрируемая функция, то , а если - нечетная интегрируемая функция, то .

Доказательство. (замена ) (ввиду четности) . Аналогично, (ввиду нечетности).

Теорема. Разложение в ряд Фурье четной функции содержит только косинусы кратных дуг (т.е. все коэффициенты ). Разложение в ряд Фурье нечетной функции содержит только синусы кратных дуг (т.е. все ).

Доказательство. Следует только заметить, что если - четная, то - четная, а - нечетная функция и если нечетная, то - четная, а - нечетная функция. Применение леммы доказывает теорему.

Приведем примеры разложения функций в ряды Фурье.

Пример. Разложим в ряд Фурье на интервале . Эта функция – нечетная, поэтому в разложении все . Интегрируя по частям, находим (здесь использовано то, что ).

Итак, получаем ряд , который сходится к функции (и к 0 в точках ).

Обратим внимание на еще один часто встречающийся тип задач.

Пример. Разложить функцию на интервале по косинусам кратных дуг. В качестве рассмотрим . Эту задачу не следует путать с разложением в ряд Фурье функции на интервале . При таком разложении тригонометрическая система имела бы вид , и разложение содержало бы как функции , так и функции . Не следует также видеть в этой задаче противоречие с разобранным выше примером. Там ведь функция была задана на , и была нечетной на этом интервале. В рассматриваемом случае мы должны сначала доопределить на интервале (в нашем случае это будет ) так, чтобы получилась четная функция .

Разложение содержит только косинусы. Рассматривая это разложение только при , получаем решение исходной задачи. При .

Разложим на . Это – четная функция. , . . Поэтому при получаем искомое разложение по косинусам кратных дуг. .

 

 

11. Дифференциальные уравнения 1-го порядка. Уравнение . Теорема существования и единственности решения задачи Коши. Уравнения с разделяющимися переменными, однородные уравнения. Уравнения вида

 

Дифференциальным уравнением называется уравнение вида , где - функция, определенная в некоторой области пространства , - независимая переменная, - функция от , - ее производные.

Порядком уравнения называется наивысший из порядков производных , входящих в уравнение.

Функция называется решением уравнения на промежутке , если для всех из выполняется равенство: .

Интегральная кривая – это график решения.

Пример 1. Решить уравнение . Его решение: определено на . Отметим, что эта постоянная – произвольная и решение – не единственное, а имеется бесконечное множество решений.

Пример 2. Решить уравнение , где - непрерывная на функция. Пусть - первообразная для . Тогда уравнение имеет бесконечное множество решений на и все они имеют вид , где - произвольная постоянная.

Есть прямой способ выбрать какое-то одно из этих решений, потребовав, например, чтобы для некоторой точки выполнялось условие . Тогда, подставив в решение, получаем условие , определяющее и, тем самым, единственное решение с указанным условием.

Рассмотрим значительно более общую ситуацию, чем была в примерах. Пусть исследуемое уравнение имеет вид: . Это – уравнение первого порядка, разрешенное относительно . (Термин «разрешенное» означает, что выражается через остальные величины, в отличие от уравнения общего вида , из которого выразить может быть и не удастся).

Сформулируем важнейшую теорему.

Теорема (о существовании и единственности решения задачи Коши). Пусть - непрерывная функция в области , причем - также непрерывен в . Тогда для любой точки задача Коши: имеет решение, причем единственное в том смысле, что если есть 2 ее решения и , определенные на интервалах и , содержащих точку , то они совпадают на пересечении этих интервалов.

Теорему оставим без доказательства.

Замечание. Говорят, что решение дифференциального уравнения на интервале есть продолжение решения на , если и на . Также говорят, что решение - максимальное или непродолжаемое относительно , если не обладает продолжениями, целиком лежащими в .

На основании этого замечания можно сказать, что при условиях теоремы существует единственное максимальное (непродолжаемое) решение задачи Коши.

Геометрический смысл сформулированной теоремы состоит в следующем. Левая часть уравнения представляет собой - тангенс угла наклона касательной к графику искомой функции в точке , а правая часть задает его численное значение в этой точке. Поэтому можно считать, что уравнение задает поле направлений на области , т.е. к каждой точке прикреплен вектор, указывающий направление касательной к искомой интергальной кривой.

Поэтому сформулированная выше теорема означает, что при выполнении ее условий через каждую точку проходит единственная непродолжаемая интегральная кривая.

Перейдем к простейшим типам дифференциальных уравнений, для которых можно в явном виде получить их решения.

Уравнения с разделяющимися переменными. Уравнениями с разделяющимися переменными называются уравнения вида , где - непрерывна на некотором , а непрерывна на , причем на . . Интегрируя обе части, получаем . Обозначая любую первообразную для , а - любую первообразную для , перепишем это уравнение в виде . Это – искомая интегральная кривая.

Рассмотрим некоторые примеры таких уравнений.

Пример 1. . Очевидно решение . Если же , то уравнение можно заменить таким: , откуда . Если считать, что , то , откуда или . Аналогично, при получаем .

Пример 2. . - решение уравнения. При имеем: , и . Аналогично, при .

В точках единственность решения нарушается. Отметим, что это не противоречит теореме единственности: - не непрерывен в 0.

Однородные уравнения. Под однородными уравнениями понимаются уравнения вида . Для их решения требуется сделать замену , после чего получится уравнение с разделяющимися переменными.

Пример. . Оно имеет решение . Пусть теперь . Преобразуем уравнение так: (правая часть имеет вид - это однородное уравнение). Полагаем . При этом и получаем уравнение . Значит, .

Уравнения вида . Такие уравнения сводятся к однородным заменой переменных. В случае, если прямые и пересекаются в точке , то замена приведет уравнение к однородному. Если же эти прямые не пересекаются, то и замена приведет к уравнению с разделяющимися переменными.

 

Date: 2016-07-05; view: 374; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию