Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Уравнения идеального трансформатора





Академия Гражданской Авиации

 

 

 

На тему: Вторичные источники питания

(Трансформаторы)

 

Выполнил: Кали Е.А. гр.-Ат(АВ)-13.2

Проверил(а): Тоймухамбетова Ф.Б.

 

 

Алматы 2016

Содержание

 

I. Введение

II. Задачи вторичных источников питания:

III. Трансформатор

1. Конструкция

2. Базовые принципы действия

3. Режимы работы трансформатора

4. Применение

IV.Заключение

V.Литература

 

I.Введение

Все источники питания можно выделить в две группы ─ первичные и вторичные.

Примером источника первичного электропитания может быть аккумуля- тор или простейшая батарейка от фонаря: когда аккумулятор заряжается от источника, то происходит преобразование электрической энергии в химиче- скую, а когда разряжается (через нагрузку) ─ химической в электрическую. То есть, происходит однократное преобразование энергии.

Источники вторичного электропитания отличаются от первичных тем, что в них происходит многократное преобразование энергии.

Вторичные источники электропитания — устройства, предназначенные для обеспечения питания электроприбора электрической энергией, при соответствии требованиям её параметров: напряжения, тока, и так далее путём преобразования энергии других источников питания.

Согласно ГОСТ Р 52907-2008 слово «вторичный» опускается.

Источник электропитания может быть интегрированным в общую схему (обычно в простых устройствах; либо когда недопустимо даже незначительное падение напряжения на подводящих проводах — например материнская плата компьютера имеет встроенные преобразователи напряжения для питания процессора), выполненным в виде модуля (блока питания, стойки электропитания и так далее), или даже расположенным в отдельном помещении (цехе электропитания).

На рисунке представлена структурная схема источника вторичного электропитания, на выходе которого, после многократного преобразования, к нагрузке подводится постоянное стабилизированное напряжение.

м

Структурная схема источника вторичного электропитания

II.Задачи вторичных источников питания:

· Обеспечение передачи мощности — источник питания должен обеспечивать передачу заданной мощности с наименьшими потерями и соблюдением заданных характеристик на выходе без вреда для себя. Обычно мощность источника питания берут с некоторым запасом.

· Преобразование формы напряжения — преобразование переменного напряжения в постоянное, и наоборот, а также преобразование частоты, формирование импульсов напряжения и т. д. Чаще всего необходимо преобразование переменного напряжения промышленной частоты в постоянное.

· Преобразование величины напряжения — как повышение, так и понижение. Нередко необходим набор из нескольких напряжений различной величины, для питания различных цепей.

· Стабилизация — напряжение, ток и другие параметры на выходе источника питания должны лежать в определённых пределах, в зависимости от его назначения при влиянии большого количества дестабилизирующих факторов: изменения напряжения на входе, тока нагрузки и так далее. Чаще всего необходима стабилизация напряжения на нагрузке, однако иногда (например, для зарядки аккумуляторов) необходима стабилизация тока.

· Защита — напряжение, или ток нагрузки в случае неисправности (например, короткого замыкания) каких-либо цепей может превысить допустимые пределы и вывести электроприбор, или сам источник питания из строя. Также во многих случаях требуется защита от прохождения тока по неправильному пути: например прохождения тока через землю при прикосновении человека или постороннего предмета к токоведущим частям.

· Гальваническая развязка цепей — одна из мер защиты от протекания тока по неверному пути.

· Регулировка — в процессе эксплуатации может потребоваться изменение каких-либо параметров для обеспечения правильной работы электроприбора.

· Управление — может включать регулировку, включение/отключение каких-либо цепей, или источника питания в целом. Может быть как непосредственным (с помощью органов управления на корпусе устройства), так и дистанционным, а также программным (обеспечение включения/выключения, регулировка в заданное время или с наступлением каких-либо событий).

· Контроль — отображение параметров на входе и на выходе источника питания, включения/выключения цепей, срабатывания защит. Также может быть непосредственным или дистанционным.

Чаще всего перед вторичными источниками питания стоит задача преобразования электроэнергии из сети переменного тока промышленной частоты (например, в России — 240 В 50 Гц, в США — 120 В 60 Гц).

Две наиболее типичных конструкции — это трансформаторные и импульсные источники питания.

Ко вторичным источникам относят трансформаторы и преобразователи.

III.Трансформа́тор

Трансформа́тор (от лат. Transformo - преобразовывать) – это статическое электромагнитное устройство, имеющее две или более индуктивно связанные обмотки на каком - либо магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений), без изменения частоты.

Трансформатор осуществляет преобразование переменного напряжения и/или гальваническую развязку в самых различных областях применения — электроэнергетике, электронике и радиотехнике.

 

Трансформатор силовой ОСМ 0,16 — Однофазный СухойМногоцелевого назначения мощностью 0,16 кВА

Конструктивно трансформатор может состоять из одной (автотрансформатор) или нескольких изолированных проволочных, либо ленточных обмоток (катушек), охватываемых общим магнитным потоком, намотанных, как правило, на магнитопровод (сердечник) из ферромагнитного магнитомягкого материала.

Трансформатор преобразует переменное напряжение в переменное, но одной величины в другую (понижает или повышает).

 

Виды трансформаторов:

· Силовой трансформатор

· Автотрансформатор

· Трансформатор тока

· Трансформатор напряжения

· Импульсный трансформатор

· Разделительный трансформатор

· Согласующий трансформатор

· Пик-трансформатор

· Сдвоенный дроссель

· Трансфлюксор

· Вращающийся трансформатор

 

Конструкция

Основными частями конструкции трансформатора являются:

· магнитопровод;

· обмотки;

· каркас для обмоток;

· изоляция;

· система охлаждения;

· прочие элементы (для монтажа, доступа к выводам обмоток, защиты трансформатора и т. п.).

В практичной конструкции трансформатора производитель выбирает между тремя различными базовыми концепциями:

· Стержневой;

· Броневой;

· Тороидальный.

Стержневой тип трёхфазных трансформаторов

Броневой тип трёхфазных трансформаторов

Любая из этих концепций не влияет на эксплуатационные характеристики или эксплуатационную надёжность трансформатора, но имеются существенные различия в процессе их изготовления. Каждый производитель выбирает концепцию, которую он считает наиболее удобной с точки зрения изготовления, и стремится к применению этой концепции на всём объёме производства.

В то время как обмотки стержневого типа заключают в себе сердечник, сердечник броневого типа заключает в себе обмотки. Если смотреть на активный компонент (т. e. сердечник с обмотками) стержневого типа, обмотки хорошо видны, но они скрывают за собой стержни магнитной системы сердечника. Видно только верхнее и нижнее ярмо сердечника. В конструкции броневого типа сердечник скрывает в себе основную часть обмоток.

Ещё одно отличие состоит в том, что ось обмоток стержневого типа, как правило, имеет вертикальное положение, в то время как в броневой конструкции она может быть горизонтальной или вертикальной.

 

2. Базовые принципы действия

Схематическое устройство трансформатора. 1 — первичная обмотка, 2 — вторичная

 

Работа трансформатора основана на двух базовых принципах:

1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)

2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку.

В некоторых трансформаторах, работающих на высоких или сверхвысоких частотах, магнитопровод может отсутствовать.

Форма напряжения во вторичной обмотке связана с формой напряжения в первичной обмотке довольно сложным образом. Благодаря этой сложности удалось создать целый ряд специальных трансформаторов, которые могут выполнять роль усилителей тока, умножителей частоты, генераторов сигналов и т. д.

Исключение — силовой трансформатор. В случае классического трансформатора переменного тока, предложенного П. Яблочковым, он преобразует синусоиду входного напряжения в такое же синусоидальное напряжение на выходе вторичной обмотки.

Закон Фарадея

ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит: U2 = −N2*dΦ/dt где

U2 — напряжение на вторичной обмотке,

N2 — число витков во вторичной обмотке,

Φ — суммарный магнитный поток, через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю B и площади S через которую он проходит.

ЭДС, создаваемая в первичной обмотке, соответственно:

 

U1 = −N1*dΦ/dt где:

 

U1 — мгновенное значение напряжения на концах первичной обмотки,

{\displaystyle N_{1}} N1 — число витков в первичной обмотке.

Поделив уравнение U2 {\displaystyle U_{2}} на U1 {\displaystyle U_{1}}, получим отношение:

U2/U1 = N2/N1

Уравнения идеального трансформатора

Идеальный трансформатор — трансформатор, у которого отсутствуют потери энергии на гистерезис и вихревые токи и потоки рассеяния обмоток. В идеальном трансформаторе все силовые линии проходят через все витки обеих обмоток, и поскольку изменяющееся магнитное поле порождает одну и ту же ЭДС в каждом витке, суммарная ЭДС, индуцируемая в обмотке, пропорциональна полному числу её витков. Такой трансформатор всю поступающую энергию из первичной цепи трансформирует в магнитное поле и затем в энергию вторичной цепи. В этом случае поступающая энергия равна преобразованной энергии:

 

P1 = I1 · U1 = P2 = I2 · U2 где:

 

P1 - мгновенное значение поступающей на трансформатор мощности, которая возникает в первичной цепи,

P2 - мгновенное значение преобразованной трансформатором мощности, поступающей во вторичную цепь.

Соединив это уравнение с отношением напряжений на концах обмоток, получим уравнение идеального трансформатора:

 

U2/U1 = N2/N1 = I1/I2

Таким образом получаем, что при увеличении напряжения на концах вторичной обмотки U2, уменьшается ток вторичной цепи I2.

Для преобразования сопротивления одной цепи к сопротивлению другой, нужно умножить величину на квадрат отношения. Например, сопротивление Z2 подключено к концам вторичной обмотки, его приведённое значение к первичной цепи будет.

 

Данное правило справедливо также и для первичной цепи:

 

Формально идеальный трансформатор описывается с помощью модели четырёхполюсника.

 

Date: 2016-08-29; view: 802; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию