Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Данные в ЭВМ – подразделяются на числовые и нечисловые.

Адресация на примере процессора 8086.

Числа, устанавливаемые процессором на адресной шине, являются адресами, т.е. номерами ячеек оперативной памяти, из которых необходимо считывать очередную команду или данные. Размер ячейки оперативной памяти составляет 8 разрядов, т.е. 1 байт. Поскольку процессор использует 16-разрядные адресные регистры, то это обеспечивает ему доступ к 65536 (FFFFh) байт или 64К (1K=1024 байт) основной памяти. Такой блок непосредственно адресуемой памяти называется сегментом. Лю­бой адрес формируется из адреса сегмента (всегда кратен 16) и адреса ячейки внутри сегмента (этот адрес называют смещением). На компьютерах, оснащенных процессо­ром 8086, оперативная память обычно имеет размер, равный 640К. Для того чтобы работать с памятью такого размера, процессор осуществляет пересчет адресов с по­мощью процедуры, называемой вычислением эффективного адреса (рис.2.3).

Физический 20-разрядный адрес вычисляется сложением сдвинутого влево на 4 разряда 16-разрядного адреса сегмента оперативной памяти со значением 16-разрядного смещения относительно начала этого сегмента. Используя 20-разрядные адреса, можно адресовать 1М оперативной памяти (1M=1024K=1048576 байт). В программе на ассемблере полный адрес записывается в виде SSSS:0000, гдe SSSS значение сегмента; 0000 – значение смещения. Участок оперативной памя­ти размером 16 байт называется параграфом.

Данные в ЭВМ – подразделяются на числовые и нечисловые.

Числовые данные:

1) Целые типы – для представления целых чисел.

2) Вещественные типы – для представления рациональных чисел. Бывают:

а) с фиксированной точкой;

б) с плавающей точкой.

Нечисловые данные:

1) Логические данные – принимающие значение истина или ложь.

2) Строковые данные.

3) Множества.

4) Произвольные данные (текст, звук, графика).

 

1. Организация ввода-вывода, классификация внешних устройств.

Организация ввода-вывода в современных ЭВМ осуществлена с использованием прерываний. Это связано с тем, что УВВ работают намного медленнее, чем процессор и оперативная память. Поэтому управляющее устройство должно приостанавливать выполнение программы и ждать завершения операции ввода-вывода с внешним устройством. При выводе все результаты выполненной программы должны быть выведены на ВУ, после чего процессор переходит к ожиданию сигналов от ВУ. При вводе, например, с клавиатуры получение значений нажатых клавиш осуществляется при поступлении прерывания от клавиатуры.

2. Двоичное кодирование информации. Представление элементарных типов данных: натуральные числа, целые числа со знаком, числа с плавающей точкой.

Состояния “установлен” и “сброшен” соотв. 2 цифрам двоичной системы счисления, фундаментальной для ЭВМ. Эти цифры называются битами. Двоичное кодирование – представление данных последовательностью битов. При двоичном кодировании числовой информации степень двойки при каждой двоичной цифре на единицу больше, чем у предшествующей цифры. Пример конструкции двоичного кода: 1012=(1*22)+(0*21)+(1*20)=510.

Таким образом осуществляется представление целых чисел без знака. Отрицательные числа со знаком представляются в дополнительном коде – в форме дополнения до двух. Чтобы найти двоичное представление отрицательного числа, надо взять его полжительную форму, проинвертировать ее и добавить к полученному результату 1.

Числами с плавающей точкой называются числа вида x=M*Pq, где М – мантисса, P – порядок, q – основание системы счисления. Нормализованная форма таких чисел:

M – дробное, |M| < 1.

Q – фиксировано.

P – целое число со знаком.

В машине в двоичных кодах хранится M и P. Порядок, как правило, выравнивается, т.е. приводится к большему по модулю порядку, путем сдвига мантиссы вправо с меньшим порядком на кол-во разрядов, равное (Pmax-Pmin)log2Q.

 

3. Правила арифметических и логических операций с элементарными типами данных.

4. Представление нечисловой информации. Текстовые данные, символьные коды ASCII, EBSDIC, UNICODE. Особенности кодирования русского алфавита.

Любой текст представляет собой послдовательность литер 0..9 A..Z a..z А..Я а..я. Набор литер весьма широк за счет наличия национальных языков. Первые машины имели алфавит только из цифр и латинских букв. Эти литеры образовали набор символов ASCII, EBSDIC. В этих кодировках общее количество символов не превышает 128 (7 бит).

При представлении в памяти текст имеет вид последовательности байтов.

Способы представления текста

1. Фиксированная длина - |_|_|_|_|_|_|_|.

2. ASCIIZ - |_|_|_|_|_|_| 0 |. Конец такой строки обозначает зарезервированный символ (не печатаемый). Получила широкое распространение благодаря языку C.

3. Variable Lenght - | x |_|_|_|_|_|. Строка содержит длину и последовательность байтов этой длины. Распространено в языке PASCAL.

Для представления национальных языков, в частности русского, 128 символов в общем случае недостаточно. Здесь используется:

1) Расширение ASCII – испольование 8 бита, теперь можно кодировать 256 символов;

2) UNICODE – использование 7 битов, но более чем 1 символа кодировки для представления большего количества литер (например для совместимости с сетями, отсекающими 8-й бит при передаче).

В настоящее время почти повсеместно используется 8-битовое кодирование символов. Кодовая таблица – графическое представление символов, по которым можно определить код. Проблемы при представлении русского алфавита - а) необходимость сортировки по кодам; б) при этом надо оставить на старых местах символы рисования рамок и заполнения (псевдографики) для совместимости с иностранными программами. Русская кодировка – основная ГОСТ – имела расположение символов по алфавиту, но в ней были смещены символы псевдографики. В настоящее время исп. альтернативная кодировка ГОСТ – в ней псевдографика оставлена на старом месте, но малые буквы русского алфавита разорваны (160-175, 224-239, 240-241). Это немного затрудняет сортировку – единственный недостаток. Кроме того, есть и другие кириллические кодировки – MIC, КОИ-8, ISO-8859, т.п.

41. Защита программ и данных в мультипрограммных средах. Режимы управления. Защита и распределение памяти.

Защита программ и данных в многозадачных ОС означает малую вероятность того, что сбой одной из выполняющихся программ не вызовет повреждения данных или кода других программ, и по возможности изолировать процессы друг от друга. Во всех ОС сущ. хотя бы 2 режима процессора – системный и пользовательский. Программа исп. в пользовательском режиме и не может использовать ряд команд. В системном режиме доступно все. Переключение режимов работы осуществляется системными вызовами. Системный вызов – специальная команда, приводящая к прерыванию, и в ядре ОС существует несколько точек, куда перейдет управление по этому прерыванию. 386 имеет встроенный механизм для этих переключений – шлюз.

Защита памяти – осуществляется путем блокировки доступа к памяти других процессов, а также блокировки доступа к памяти ядра. Один из способов – вся память делится на страницы, и у каждой есть замок – 4-битовый признак, который можно установить только привелигированной командой. В процессоре есть 4-битовый регистр – ключ, который также можно установить только привелигированной командой. При обращении происходит сравнение замка и ключа.

С появлением многозадачности появилась проблема распределения памяти. При работе реальной программы обращения к ОП имеют тенденцию к локализации. Память можно разделить на используемую и неиспользуемую. Чтобы отследить использование области памяти, всю ОП можно разбить на страницы фиксированного размера (4К) и с каждой страницей связать бит, который устанавливать при обращении к данной странице.

 

1. Общее понятие архитектуры. Принципы построения ВС 4-го поколения.

 

2. Состав и функции основных блоков ВС: процессора, оперативной памяти, устройства управления, внешних устройств.

 

 

 

2. Адресация. Данные в ЭВМ: структура и форматы представления.

 

 

5. Системные особенности архитектур ЭВМ. Примеры эволюции современных ВК – IBM 370, PDP11/VAX, Intel 80X86, RISC.

 

 

6. Двоичное кодирование информации. Представление элементарных типов данных: натуральные числа, целые числа со знаком, числа с плавающей точкой.

 

 

7. Свойства точности вычислений при работе с плавающей точкой. Приемы программирования, обеспеч. необходимую точность вычислений.

 

 

8. Представление нечисловой информации. Текстовые данные, символьные коды ASCII, EBSDIC, UNICODE. Особенности кодирования русского алфавита.

 

 

1. Представление графической информации – растровое и векторное представления, разрешающая способность, полутоновые и цветные изображения, палитры.

 

39. Динамическое распределение памяти, оверлейные программы. Общая структура объектного модуля.

 

 

45. Системная архитектура 80386: сегментирование, страничная организация, средства авторизации и защиты.

 

 

42. Управление ЦП – фоновая обработка, пактная обработка, прерывания.

 

43. Общая схема функционирования ОС – супервизор, диспетчер, планировщик. Виртуализация.

 

41. Защита программ и данных в мультипрограммных средах. Режимы управления. Защита и распределение памяти.

 

 

40. Основные функции ОС. Принципы мультипрограммирования. Системные ресурсы.

 

 

39. Динамическое распределение памяти, оверлейные программы. Общая структура объектного модуля.

 

 

38. Типы внешних ссылок и общих имен. Статическое и динамическое разрешение ссылок.

Внешние ссылки см. 17, 33, 34.

 

 

34. Технология разработки программ – трансляция и редактирование связей. Понятие об исходном, объектном, выполняемом модулях.

 


<== предыдущая | следующая ==>
Причастие как особая форма глагола. Действительные причастия. | Характеристика выпускной квалификационной работы

Date: 2016-07-25; view: 895; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.008 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию