Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Основы электрофизиологии сердца





Сердечная мышца является неоднородной с точки зрения структуры и функции. Основную ее массу составляют кардиомиоциты, обеспечивающие реализацию механической функции сердца и способные воспринимать импульсы возбуждения, которые обра­зуются в клетках специализированной проводящей системы серд­ца, обеспечивающей реализацию биоэлектрической активности сердечной мышцы.

В состав проводящей системы сердца входят клетки, способные вырабатывать импульсы возбуждения (пейсмекеры или Р–клетки), проводящие миоциты, обеспечивающие проведение импульса воз­буждения, и клетки (волокна) Пуркинье, терминальные клетки проводящей системы сердца, обеспечивающие непосредственную пе­редачу импульса возбуждения на кардиомиоциты, в которых, бла­годаря системе электромеханического сопряжения, энергия элек­трического импульса преобразуется в энергию механического со­кращения.

Клетки–пейсмекеры образуют два скопления, одно из которых (синусовый узел) располагается в правом предсердии в устье полых вен, второе (атриовентрикулярное (АВ) соединение) – в нижней части межпредсердной перегородки.

Проводящие миоциты предсердий, непосредственно соприка­саясь с синусовым узлом и АВ–соединением, образуют проводящую систему предсердий в виде межузловых и межпредсердных трактов, объединяющих два узла (синусовый и атриовентрикулярный) и оба предсердия.

Проводящая система желудочков (система Гиса–Пуркинье), состоит из проводящих миоцитов, которые, непосредственно примыкая к АВ–соединению, образуют ствол, ножки (правая для правого желудочка, левая – для левого) и ветви пучка Гиса, заканчивающиеся волокнами (клетками) Пуркинье.

Автоматам – способность сердечной мышцысамостоятельно вырабатывать импульсы возбуждения.

В норме импульсы возбуждения вырабатываютсяв синусовом узле, который являетсяосновным водителем ритма длясердечноймышцы. Прислабости или отказе синусового узла функцию водите­ля ритма берет на себяАВ–соединение, при слабости или отказе АВ–соединения функция водителя ритма передаетсяпроводящим миоцитам системы Гиса–Пуркинье.

Синусовый узел является облигатным (обязательным) водите­лем ритма, АВ–соединение и проводящие миоциты желудочков – факультативными (необязательными), составляя вспомогательную (резервную) систему, клеточные элементам которой в экстремальной. ситуации берут на себя роль водителя ритма.

Уровень автоматизма, то есть способность вырабатывать им­пульсы возбуждения, у здорового человека максимален у синусового узла, поэтому он называется центром автоматизма первого поряд­ка. Несколько ниже – у АВ–соединения (центр автоматизма второго порядка), еще ниже у проводящих миоцитов желудочков (центры автоматизма третьего и четвертого порядка), при этом в желудоч­ках уровень автоматизма снижается по направлению к дистальным отделам системы Гиса–Пуркинье.

Уровень автоматизма определяется частотой, с которой води­тель ритма способен вырабатывать импульсы возбуждения.Синусовый узел может вырабатывать импульсы возбуждения с частотой от 200 (и выше) до 60 (и ниже) в минуту (в зависимости отситуации – при физической нагрузке частота синусовогоритма увеличивается, в спокойном состоянии – уменьшается, во время ночного сна снижается до 60 и ниже). В состоянии покоя частота синусового ритма у здорового человека составляет примерно 60–85 в минуту.

Способность синусового узла изменять уровень автоматизма в широких пределах позволяет человеку легко адаптироваться к меняющимся условиям окружающей среды, выполнять тяжелую физическую работу.

Уровень автоматизма синусового узла регулируется симпатической и парасимпатической нервной системой (катехоламины повышают, ацетилхолин понижает частоту образования импульса возбуждения в клетках пейсмекерах синусового узла). На частоту образования импульса возбуждения в синусовом узле влияет также температура тела и окружающей среды. При повышении температуры тела автоматизм и, следовательно, частота выработки импульсов воз­буждения в синусовом узле увеличивается

АВ–соединение вырабатывает импульсы возбуждения с часто­той 70–60 в минуту, причем частота узлового ритма (ритма из АВ–соединения) существенно не меняется в зависимости от уровня физи­ческой активности человека. Активность АВ–соединения также нахо­дится под вегетативным контролем, однако влияние симпатической и парасимпатической нервной системы здесь менее выражено, чем на уровне синусового узла, что объясняет его определенную физиологи­ческую ригидность

Проводящие миоциты системы Гиса–Пуркинье вырабатыва­ют импульсы возбуждения с частотой 50–25 в минуту и ниже (в за­висимости от локализации идиовентрикулярного, то есть желудочкового, водителя ритма).

Импульсы возбуждения образуются в клетках–пейсмекерах в процессе медленной диастолической деполяризации благодаря пе­ремещению ионов калия, натрия и кальция через полупроницаемую клеточную мембрану по медленным ионным каналам в двух направ­лениях (из межклеточного пространства в клетку и наоборот).

Перемещение ионов через клеточную мембрану в фазу медлен­ной диастолической деполяризации приводит к постепенному увели­чению внутриклеточного заряда Р–клетки, который становиться вы­ше, чем заряд ее клеточной мембраны, после чего импульс возбужде­ния "выплескивается" из Р–клетки на проводящие миоциты предсер­дий.

Проводимость. Проведение импульса возбуждения по прово­дящим миоцитам осуществляется по тому же механизму, который обеспечивает распространение волны возбуждения по кардиомиоцитам сократительного миокарда предсердий и желудочков, то есть путёмбыстрой деполяризации мембраны клеток.

Скорость проведения импульса возбуждения по проводящим миоцитам предсердий и желудочков очень высока и составляет примерно 2 м/с (от 0,9 до 1,7 м/с) в предсердиях и 1–1,5 м/с в системе Гиса–Пуркинье, превышая в несколько раз скорость проведения импульса возбуждения через АВ–соединение (0,05 м/с) и скорость распространения волны возбуждения по миокарду предсердий (0,8 м/с) и желудочков (0,4 м/с)

Физиологическая задержка проведения импульса возбуждения в АВ–соединение, обеспечивающая синхронизированное по времени последовательное сокращение предсердий и желудочков, связа­на с наличием в АВ–соединении Р–клеток, обладающих автоматиче­ской активностью и определяющих более высокое сопротивление АВ–соединения проводимому импульсу возбуждения.

Длительность проведения импульса возбуждения черезАВ–соединение составляет примерно 0,12–0,22 с. Зависит от частотысердечного ритма: при синусовой тахикардии уменьшается до 0,12 с,при синусовой брадикардии увеличивается до 0,20–0,22 с.

Возбудимость. Определяется способностью кардиомиоцитов предсердий и желудочков воспринимать и распространять (по сократительному миокарду) импульсы возбуждения. Реализуется путём быстрой систолической деполяризации мембраны кардиомиоцитов в результате перемещения ионов натрия, калия, кальция и хлора через клеточную мембрану.

В состоянии электрического покоя на поверхности клеточной мембраны и внутри клетки имеется неравновесная концентрация ионов натрия и калия. Ионов натрия на поверхности клетки примерно в 19 раз больше, чем внутри клетки, ионов калия, наоборот, примерно в 30 раз больше внутри клетки, чем на ее поверхности.

В состоянии покоя, благодаря избыточной концентрации поло­жительно заряженных ионов натрия на поверхности клетки, наруж­ная поверхность клеточной мембраны имеет положительный заряд. Внутри клетки в состоянии покоя регистрируется отрицатель­ный заряд, что обеспечивается повышенным содержанием в клетке ионов калия, которые так изменяют геометрию внутриклеточных белков, что их отрицательные валентности выходят на поверхность белковых молекул.

В покое разницы потенциалов на поверхности кардиомиоцита нет. Если в состоянии покоя с помощью микроэлектродов снять потенциал с поверхности клетки, то на электрограмме (ЭГ) одиночного мышечного волокна отклонений от изоэлектрической линии не будет. В этот период с помощью микроэлектродов можно зарегистрировать только разницу между зарядом на поверхности клетки и внутри нее. Это так называемый потенциал покоя, мощность которого колеблется от –50 до –90 мВ.

В состоянии электрического покоя клеточная мембрана непроницаема для ионов, что поддерживает высокий концентрационный градиент ионов натрия и калия с ее наружной и внутренней поверхности. Под воздействием импульса возбуждения в плазматической мембране кардиомиоцита открываются потенциал зависимые быстрые натриевые каналы, по которым в клетку по градиенту концентрации без затраты энергии перемещаются ионы натрия (быстрый потенциал–зависимый ток натрия в клетку).

Происходит изменение заряда клеточной мембраны как на ее поверхности, так и внутри (фаза деполяризации клеточной мем­браны) В процессе деполяризации один полюс клетки (тот, к кото­рому поступил импульс возбуждения) становится отрицательным, другой (противоположный) – положительным. Возникает разность потенциалов (потенциал действия), которая при записи ЭГ регист­рируется как положительное, почти вертикальное отклонение от изо­электрической линии (фаза 0 потенциала действия).

В процессе деполяризации отмечается постепенное уменьшение отрицательного значение потенциала покоя. Когда потенциал покоя снижается до – 50 мВ, в клеточной мембране открываются медлен­ные натриевые и натрий–зависимые кальциевые каналы, по которым осуществляется медленный ток натрия и кальция внутрь клетки.

При деполяризации мембраны до – 40 мВ в клеточной мембра­не открываются медленные калиевые каналы, по которым калий выходит за пределы клетки. Это выходящий из клетки "задержанный" К–ток, ответственный за процесс деполяризации и реполяризации клеточной мембраны, то есть процесс восстановле­ния исходной поляризации клетки.

В процессе деполяризации клеточной мембраны потенциал по­коя быстро исчезает, то есть с –90 мВ снижается до нуля, в конце фа­зы деполяризации (на пике кривой ЭГ) даже становиться положи­тельным (реверсионный потенциал), достигая примерно +20 мВ.

Быстрый натриевый ток прекращается, когда в клетку входит небольшое количество отрицательно заряженных ионов хлора. На электрограмме в этот момент регистрируется короткая отрицательная волна. Это фаза ранней быстрой реполяризации клетки (фаза 1 по­тенциала действия).

Далее наступает момент, когда вся наружная поверхность клеточной мембраны становится отрицательной, а внутренняя – положительной (период обратной поляризации клетки). Разницы потенциалов на поверхности клетки почти нет, поэтому на ЭГ одиночного мышечного волокна в этот период регистрируется плато, имеющее постепенно убывающий характер (фаза медленной реполяризации или фаза 2 потенциала действия), что объясняется медленным перемещением ионов кальция, натрия и калия через клеточную мембра­ну (натрия и кальция с помощью кальций–натриевого обменного ме­ханизма, калия по медленным калиевым каналам)

Фаза плато плавно переходит в конечную фазу быстрой реполяризации клеточной мембраны, когда, благодаря работе калий. натриевого насоса, восстанавливается исходная неравновеснаяконцентрация ионов калия и натрия по обе стороны клеточной мембраны и исходный потенциал покоя. На электрограмме в этот период регистрируется плавное снижение кривой до изоэлектрической линии (фаза 3 потенциала действия).

Калий–натриевый насос клеточной мембраны представляет собой белковую молекулу, обладающую ферментативной актив­ностью, способную расщеплять АТФ, благодаря энергии которого создается возможность перемещения ионов натрия и калия через кле­точную мембрану против их концентрационного градиента. Так как процесс конечной быстрой реполяризации мембраны энергоза­висим, он осуществляется значительно медленнее, чем процесс де­поляризации, при котором быстрый ток натрия в клетку обеспечива­ется концентрационным градиентом и осуществляется почти без за­траты энергии.

Продолжительность потенциала действия для единичного мы­шечного волокна обычно не превышает 400 мл/с. Это электрическая систола кардиомиоцита, после окончания которой наступает период электрической диастолы (фаза 4 потенциала действия), когда мембрана кардиомиоцита становится, в отличие от мембраныклеток пейсмекеров, непроницаемой для ионов. Перемещения ионов через мембрану кардиомиоцитов и проводящих миоцитов в этот период нет.

Одним из основных биоэлектрических свойств сердечной мыш­цы является рефрактерность, то есть способность не воспринимать импульс возбуждения. Это свойство, как обратная сторона медали, связано с возбудимостью и проявляется в определенные фазы потенциала действия. Выделяют абсолютную и относительную рефрактерность клетки (сердечной мышцы). Первая совпадает с фазой 0, 1 и 2 потенциала действия, вторая с фазой 3 потенциала действия. В начале 3 фазы (периода конечной быстрой реполяризации) возникает так называемая "экзальтационная фаза" (по Н.Е.Введенскому), когда рефрактерность на очень короткий период сменяется сверхнормальной возбудимостью В этот уязвимый период даже маломощный импульс возбуждения способен вызвать повторную (преждевременную) волну возбуждения.

Date: 2016-07-25; view: 539; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию