Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






г) Она должна быть нормированной, т.е. этот интеграл должен быть равен 1.

А) Она должна быть непрерывной.

Б) Она должна быть однозначной.

В) Она должна быть интегрируема с квадратом, т.е. интеграл ò½Y(q)½2dq должен существовать.

г) Она должна быть нормированной, т.е. этот интеграл должен быть равен 1.

 

Физический смысл последнего утверждения довольно прост и прозрачен: сумма вероятностей всех возможных значений координат равна единице, так как обнаружение объекта в любой точке пространства - есть событие достоверное.

 

Следует также отметить, что волновая функция системы может быть комплексной, и она определена лишь с точностью до фазового множителя exp(ia), где a - вещественное число. Эта неопределенность не может быть устранена, однако она несущественна и не отражается на физических результатах.

 

Постулат №2.

Волновые функции подчиняются принципу суперпозиции: если в состоянии с волновой функцией Y1(q) некоторое измерение приводит к результату Х1, а в состоянии Y2(q) - к результату Х2, то всякая функция вида Y=с1Y1(q)+с2Y2(q)

описывает такое состояние, в котором измерение дает либо результат Х1, либо Х2.

 

Постулат №3.

Всякой физической величине L в квантовой механике сопоставлен линейный самосопряженный оператор. Единственно возможными величинами, которые может иметь эта физическая величина, являются собственные значения l операторного уравнения L Y=lY

 

Постулат №4.

Возможная волновая функция состояния системы Y получается при решении дифференциального уравнения ih·d Y/dt=HY, где H - оператор Гамильтона, а уравнение называется уравнением Шредингера.

 

Постулат №5.

Если произвести многократные измерения какой-либо динамической переменной l системы, находящейся в состоянии Y, то на основании результатов этих измерений можно определить ее среднюю величину. Эта средняя величина вычисляется по формуле:

l=òY*LYdq/òY*Ydq

 

3.

 

 

4. Матрицей линейного оператора в базисах e, f называется матрица A, столбцами которой являются координаты образов базисных векторов базиса e в базисе f, A = { a i j } = { A (e j) i }:

 

 

 

 

 

Как следует из постулатов квантовой механики, волновая функция удовлетворяет уравнению Шредингера

(1)

где - оператор энергии, который называют также оператором Гамильтона или гамильтонианом. Как следует из (1) оператор является генератором трансляции квантовой системы по времени:

(2)

Наличие в выражении уравнении (1) обеспечивает эрмитовость гамильтониана.

Рассмотрим основные свойства уравнения (1). Докажем следующее утверждение. Если функция удовлетворяет уравнению (1) и нормирована на единицу в начальный момент времени, то она будет нормирована на единицу и в любой другой момент времени (об этом свойстве уравнения Шредингера говорят, что оно сохраняет нормировку волновой функции). Для доказательства умножим уравнение (1) скалярно на функцию один раз слева, другой раз - справа. Получим

(3)

(4)

(знак «-» в (4) появился из-за антилинейности скалярного произведения относительно первого сомножителя). Вычитая формулу (4) из формулы (3) и учитывая, что

(5)

и эрмитовость гамильтониана, получим

(6)

что и означает сохранение нормировки волновой функции.

Уравнение (1) допускает решение в случае, когда гамильтониан квантовой системы не зависит явно от времени. Будем искать решение временного уравнения Шредингера в виде функции с разделенными переменными. Подставляя эту функцию в уравнение Шредингера (1) и учитывая, что оператор Гамильтона действует только на функции координат, получим

(7)

Разделив уравнение (7) на произведение, имеем

(8)

Так как правая часть уравнения (8) зависит только от координат (не содержит времени), а левая - только от времени, то уравнение (8) удовлетворяется при любых и только тогда, когда и правая и левая часть уравнения (8) равны некоторой постоянной. Обозначим эту постоянную. Тогда

(9)

(10)

Из равнения (10) следует, что постоянная совпадает с одним из собственных значений, а функция - с одной из собственных функций оператора Гамильтона:

(11)

Решая уравнение (9) для функции, получим

(12)

где - произвольная постоянная. Таким образом, любая функция вида

(13)

где - собственная функции оператора Гамильтона, а - соответствующее собственное значение, является решением уравнения (1). Так как уравнение (1) - линейное, то любая линейная комбинация функций вида (12) с произвольными коэффициентами

(14)

также является решением временного уравнения Шредингера (1). А поскольку система собственных функций оператора Гамильтона является полной в пространстве функций переменной, то функция (14) в момент времени при определенном выборе коэффициентов может воспроизвести любую функцию. Это значит, что функция (14) дает решение уравнения Шредингера для любого начального условия, то есть является общим решением временного уравнения Шредингера (в случае когда гамильтониан не зависит явно от времени).

Среди всех решений (14) уравнения Шредингера (1) выделяются функции, которые представляют собой одно слагаемое выражения (14)

(15)

Эти функции замечательны тем, что несмотря на то, что они зависят от времени, никакие вероятности, определяемые функцией (15), не зависят от времени. Действительно, вероятности определяются билинейной комбинацией, из которой «уходит» время. По этой причине состояния, которые описываются волновыми функциями вида (15), называются стационарными. Если же решение (14) содержит несколько слагаемых, то вероятности различных физических величин и их средние значения, как правило, зависят от времени. Тем не менее, для ряда величин вероятности и средние не зависят от времени даже в нестационарных состояниях. Например, среднее значение энергии в любом состоянии системы, гамильтониан которой не зависит от времени, не зависит от времени. Действительно, используя квантовомеханическую формулу для средних имеем

(16)

Подставляя в качестве волновой функции системы выражение (14) и учитывая, что функции являются собственными функциями гамильтониана, получим

(17)

Поскольку функции ортогональны, в сумме остаются только диагональные слагаемые, из которых «уходит» время. Отсюда и следует сделанное выше утверждение (подробнее о величинах, средние значения которых не зависят от времени в любых состояниях и которые называются интегралами движения см. следующую лекцию).

Отметим еще одно важное обстоятельство, связанное со стационарными состояниями. Поскольку общее решение (14) представляет собой разложение по собственным функциям оператора Гамильтона, то согласно постулатам квантовой механики величины

 

представляют собой вероятности различных значений энергии. Поэтому при измерении энергии системы в стационарном состоянии можно обнаружить единственное значение, и, следовательно, энергия в стационарном состоянии всегда имеет определенное значение.

Рассмотрим одну частицу, движущуюся в трехмерном пространстве. Поскольку нормировка волновой функции не зависит от времени, то уменьшение или увеличение вероятности обнаружить частицу в некотором объеме сопровождается соответственно увеличением или уменьшением вероятности обнаружить частицу в остальной части пространства. Поэтому для плотности вероятности различных значений координат справедлив закон сохранения

загрузка...

(18)

где вектор имеет смысл плотности потока вероятности. Используя уравнение Шредингера можно найти.

Для этого умножим уравнение (1) на, комплексно сопряженное уравнение - на, вычтем второе уравнение из первого и проинтегрируем по некоторому объему. Получим

(19)

где использовано явное выражение для гамильтониана частицы

(20)

(- потенциальная энергия). Используя формулу векторного анализа, справедливую для любых функций, и теорему Гаусса, получим

(21)

где интегрирование в правой части проводится по поверхности, ограничивающей рассматриваемый объем. Поскольку равенство (21) справедливо для любого объема, для подынтегральной функции в (21) справедливо равенство

(22)

где символом обозначена векторная функция

(23)

Чтобы понять смысл функции вернемся к выражению (21). В левой части имеем изменение вероятности обнаружить частицу в этом объеме, в правой – интеграл по поверхности объема от. Или, другими словами, изменение вероятности обнаружить частицу в некотором объеме определяется потоком вектора через поверхность, ограничивающую этот объем. По этой причине вектор имеет смысл плотности потока вероятности.

Анализ векторной функции (23) позволяет отвечать на вопрос о движении частиц. Действительно, поскольку результаты измерений в микромире являются неопределенными, то можно говорить лишь о движении частицы в среднем, которое определяется увеличением или уменьшением вероятности обнаружить частицу в тех или иных объемах. А это изменение и определяется вектором плотности потока вероятности

ДОКУМЕНТ 6 ВОПРОС

Залежність середніх від часу. Інтеграли руху. Закони збереження та си-

метрії. Збереження парності.

 

 

 

Пусть потенциальная энергия частицы зависит только от координаты:

 

Тогда, поскольку потенциальная энергия не зависит от времени, волновые функции возможных состояний частицы описываются соотношением

(1)

где - произвольные числа, и - собственные значения и собственные функции оператора Гамильтона частицы (стационарного уравнения Шредингера):

(2)

Поэтому для построения всех решений временного уравнения Шредингера необходимо знать все решения стационарного уравнения Шредингера (2).

Так как потенциальная энергия зависит только от переменной, пространство вдоль осей и однородно, вдоль них частица движется свободно, и такое движение можно описать с помощью плоской волны. В этом случае необходимо описать только ту часть волновой функции, которая зависит от координаты. Соответствующая часть гамильтониана имеет вид:

(3)

Пусть потенциальная энергия частицы является ограниченной функцией при всех конечных значениях координат. Также пусть функция стремится на бесконечностях к некоторым постоянным, одну из этих постоянных без ограничения общности можно выбрать равной нулю (изменяя начало отсчета энергий):

(4)

Докажем, что все собственные значения лежат выше уровня. Для этого возьмем произвольное состояние. Очевидно,

(5)

Поэтому

(6)

(так как среднее значение квадрата оператора импульса неотрицательно). Поскольку неравенство (6) выполнено для любого состояния, а для собственных состояний гамильтониана его среднее значение равно соответствующему собственному значению, то весь спектр лежит в области выше.

Докажем теперь, что при энергиях могут существовать только дискретные собственные значения. Для этого рассмотрим асимптотику уравнения (3) при. При асимптотики уравнения (3) имеют вид

 

(7)

где,. Как легко проверить, частными решениями уравнений (7) являются функции и на и и на. Это значит, что общее решение уравнения (3) содержит растущую и затухающую при экспоненты. Чтобы решение было конечным при, необходимо отбросить растущие решения, или, другими словами, наложить на решения два дополнительных условия: одно при, второе - при.

Поскольку уравнение (2) является дифференциальным уравнением второго порядка, его общее решение зависит от двух произвольных постоянных, причем одна из них всегда может быть выбрана как общий множитель, так как уравнение (2) однородно. Поэтому одновременно удовлетворить двум указанным граничным условиям, подбирая произвольные постоянные в общем решении, вообще говоря, невозможно. Действительно, так как одна из постоянных является множителем, то условия конечности решения при могут дать только нулевое значение этой постоянной, то есть привести к тривиальному решению. Поэтому ненулевые ограниченные решения уравнения (2) при, вообще говоря, не существуют. Однако, может оказаться, что при определенных значениях энергии некоторое ненулевое решение удовлетворяет обоим граничным условиям, при этом общий множитель в решении остается неопределенным (может оказаться, что таких значений не существует). Эти значения и будут собственными значениями оператора Гамильтона, а соответствующие ограниченные решения - собственными функциями. Таким образом, при спектр собственных значений (если они существуют) дискретен, а отвечающие этим собственным значениям собственные функции затухают при. Из этих рассуждений также очевидно, что кратность вырождения дискретных собственных значений равна единице, то есть для каждого собственного значения существует единственная (с точностью до множителя) собственная функция. Собственные состояния оператора Гамильтона, отвечающие дискретному спектру, принято называть уровнями энергии.

Рассмотрим теперь уравнение (2) при. В этом случае асимптотика уравнения (2) при также имеет вид (7), однако в области, а в области. Поэтому решениями уравнения (2) в области являются тригонометрические функции и, в области - растущая и затухающая экспоненты. Следовательно, при рассматриваемых значениях требования конечности накладывают только одно дополнительное условие на решения. Этому условию можно всегда удовлетворить, подбирая нужным образом одну из произвольных постоянных в общем решении дифференциального уравнения (2). Это значит, что в рассматриваемом случае для любого значения существует конечное решение уравнения Шредингера, причем на той бесконечности, где, это решение представляет собой линейную комбинацию тригонометрических функций и, следовательно, не затухает. Таким образом, любое число из интервала является собственным значением гамильтониана, то есть спектр собственных значений непрерывен. При этом все эти собственные значения невырождены, поскольку общее решение дифференциального уравнения второго порядка содержит две произвольные постоянные, одна из которых фиксируется условием конечности собственной функции на той бесконечности, где, а вторая является множителем, который никак не может быть определен из уравнения, поскольку оно однородно.

загрузка...

Если выполнены оба неравенства,, то никаких ограничений на решение уравнения (2) требования конечности не накладывают, и ограниченные незатухающие решения существуют при любом значении величины. Очевидно, в этом случае собственные значения двукратно вырождены, так как дифференциальное уравнение второго порядка имеет два линейно независимых частных решения, а волновые функции собственных состояний остаются конечными при.

Сформулируем без доказательства одно важное свойство собственных функций оператора Гамильтона, относящихся к дискретному спектру, которое называется осцилляционной теоремой. Перенумеруем собственные значения одномерного гамильтониана в порядке их возрастания. Тогда собственному состоянию с минимальной энергией (основному состоянию) отвечает собственная функция, которая нигде не обращается в нуль (за исключением, может быть, границ доступной для движения частицы области), второму по энергии состоянию (первому возбужденному) - собственная функция, которая обращается в нуль один раз (или, как говорят, имеет один узел), второму возбужденному – функция с двумя узлами и т.д. Собственная функция -го по энергии состояния обращается в нуль (за исключением границ) раз, или имеет узел.

Рассмотрим теперь вопрос о существовании собственных состояний дискретного спектра (из рассуждения, приведенных выше, следует только, что состояния дискретного спектра могут существовать только при энергиях, меньших граничных значений потенциала).

Рассмотрим сначала потенциал, обращающийся в нуль при, и пусть интеграл от функции отрицателен:

 

Возьмем волновую функцию, такую, что она нигде, кроме в ноль не обращается (гладкая и непрерывная вместе со своей первой производной). Обозначим за область, где волновая функция отлична от нуля. В этой области:

 

Поэтому

(8)

Из формулы (8) следует, что

 

и при больших:. Значит, существуют такие состояния, для которых средняя энергия отрицательна, а поскольку средняя энергия связана с собственными значениями и их вероятностями соотношением

(9)

из (9) заключаем, что, и, следовательно, условие - достаточное условие существования собственного состояния с отрицательной энергией, которое, поскольку потенциал обращается в нуль при, является состоянием дискретного спектра.

Остановимся теперь на интерпретации решений уравнения Шредингера. В случае дискретного спектра решения экспоненциально затухают при, и, следовательно, во-первых, могут быть нормированы на единицу, а во-вторых, определяют такие состояния, в которых частица не уходит на бесконечность (поскольку вероятность обнаружить частицу на бесконечности стремится к нулю). Это значит, что такие волновые функции описывают движение частицы в ограниченной области пространства (финитное движение), или, другими словами, «связанное» потенциалом состояние частицы.

Совершенно другая ситуация имеет место в случае решений, отвечающих непрерывному спектру собственных значений. Эти решения не затухают при и, следовательно, определяют состояния инфинитного движения.

Последний вопрос, который мы рассмотрим в этой лекции, это вопрос о четности решений стационарного уравнения Шредингера. Пусть потенциальная энергия - четная функция координаты. Тогда оператор четности коммутирует с оператором Гамильтона. Поэтому операторы и имеют полную систему общих собственных функций, причем любая собственная функция одного из них, отвечающая невырожденному собственному значению, является собственной функцией другого. Поскольку все собственные значения оператора, отвечающие состояниям дискретного спектра, не вырождены, то соответствующие собственные функции оператора Гамильтона являются и собственными функциями оператора четности (то есть либо четными, либо нечетными функциями).

Из осцилляционной теоремы следует, что собственная функция, отвечающая связанному состоянию с минимальной энергией (его называют основным состоянием), с одной стороны, не имеет узлов, с другой - является либо четной, либо нечетной. Так как нечетная функция хотя бы один узел обязательно имеет (она обращается в нуль при), то основному состоянию отвечает четная функция координат. Волновая функция следующего связанного состояния (которое называют первым возбужденным состоянием) обращается в нуль только один раз. Поэтому этот узел находится при (в противном случае существовал бы и второй нуль, симметричный относительно начала координат). А поскольку волновая функция в этой точке меняет знак (так как ее производная не равна нулю), то эта функция нечетная и т.д. Таким образом все собственные функции, отвечающие дискретному спектру, обладают определенной четностью, причем их четность чередуется в порядке возрастания энергии – четная-нечетная-четная-нечетная и т.д.

Состояния непрерывного спектра определенной четностью не обладают из-за двукратного вырождения. Однако из теоремы о коммутации операторов следует, что их можно выбрать так, чтобы они обладали определенной четность. При таком выборе для каждой энергии будут существовать четное и нечетное решения.

Если потенциальная энергия частицы не имеет определенной четности, то четных или нечетных решений уравнение Шредингера не имеет.

http://studopedia.ru/3_104012_obshchie-svoystva-statsionarnih-sostoyaniy-odnomernogo-dvizheniya-dlya-diskretnogo-spektra-kvantovanie-energii-v-potentsiale-prityazheniya-ostsillyatsionnaya-teorema.html

 

 

8. Нескінченно глибока прямокутна потенціальна яма. Спектр, стаціонарні

стани, розкладання по власних функціях гамільтоніана, середні

 

 

9. КНИГА КОТОРУЮ Давал Кирилл

 

10. 10. Загальні властивості стаціонарних станів одновимірного руху в разі без-

перервного спектру. Проходження потенційних бар'єрів. Тунельний ефект.

 

http://ens.tpu.ru/POSOBIE_FIS_KUSN/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D1%8F%20%D0%BE%D0%BF%D1%82%D0%B8%D0%BA%D0%B0.%20%D0%90%D1%82%D0%BE%D0%BC%D0%BD%D0%B0%D1%8F%20%D0%B8%20%D1%8F%D0%B4%D0%B5%D1%80%D0%BD%D0%B0%D1%8F%20%D1%84%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0.%20%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0%20%D1%8D%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D1%8B%D1%85%20%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86/05-4.htm

 

Прохождение частиц сквозь потенциальный барьер. Туннельный эффект  
 

 

Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 5.4) для одномерного (по оси х) движения частицы.

 

Рис. 5.4

Для потенциального барьера прямоугольной формы высоты U и ширины l можно записать:

 

При данных условиях задачи классическая частица, обладая энергией Е, либо беспрепятственно пройдет над барьером при E > U, либо отразится от него (E < U) и будет двигаться в обратную сторону, т.е. она не может проникнуть через барьер.

Для микрочастиц же, даже при E < U, имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E > U имеется также отличная от нуля вероятность, что частица окажется в области x > l, т.е. проникнет сквозь барьер. Такой вывод следует непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при данных условиях задачи.

Уравнение Шредингера для состояний каждой из выделенных областей имеет вид:

  , (5.4.1)  

 

  . (5.4.2)  

Общее решение этих дифференциальных уравнений:

    (5.4.3)  

В данном случае, согласно (5.4.2), – мнимое число, где

Можно показать, что A 1 = 1, B 3 = 0, тогда, учитывая значение q,получим решение уравнения Шредингера для трех областей в следующем виде:

    (5.4.4)  

В области 2 функция (5.4.4) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени не мнимые, а действительные.

Качественный анализ функций Ψ1(x), Ψ2(x), Ψ3(x) показан на рис. 5.4. Из рисунка следует, что волновая функция не равна нулю и внутри барьера, а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом, т.е. с той же частотой, но с меньшей амплитудой.

Таким образом, квантовая механика приводит к принципиально новому квантовому явлениютуннельному эффекту, в результате которого микрообъект может пройти через барьер.

Коэффициент прозрачности для барьера прямоугольной формы.

Для барьера произвольной формы.

Прохождение частицы сквозь барьер можно пояснить соотношением неопределенностей. Неопределенность импульса на отрезке Δ x = l составляет Связанная с этим разбросом кинетическая энергия может оказаться достаточной для того, чтобы полная энергия оказалась больше потенциальной и частица может пройти через барьер.

С классической точки зрения прохождение частицы сквозь потенциальный барьер при E < U невозможно, так как частица, находясь в области барьера, должна была бы обладать отрицательной кинетической энергией. Туннельный эффект является с пецифическим квантовым эффектом.

Строгое квантово-механическое решение задачи о гармоническом осцилляторе приводит еще к одному существенному отличию от классического рассмотрения. Оказывается, что можно обнаружить частицу за пределами дозволенной области (,) (рис. 5.5), т.е. за точками 0 и l (рис. 5.1).

 

Рис. 5.5

Это означает, что частица может прибывать там, где ее полная энергия меньше потенциальной энергии. Это оказывается возможным вследствие туннельного эффекта.

Основы теории туннельных переходов заложены работами советских ученых Л.И. Мандельштама и М.А. Леонтовича в 1928 г. Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений физики твердого тела (например явления в контактном слое на границе двух полупроводников), атомной и ядерной физики (например α-распад, протекание термоядерных реакций).

 

 

1111111111111 1111

 

http://nuclphys.sinp.msu.ru/spargalka/007i.htm

 

Альфа-распад - распад атомных ядер, сопровождающийся испусканием альфа-частиц (ядер 4He).
Часть изотопов могут самопроизвольно испускать альфа-частицы (испытывать альфа-распад), т.е. являются альфа-радиоактивными. Альфа-радиоактивность за редким исключением (например 8Be) не встречается среди легких и средних ядер. Подавляющее большинство альфа-радиоактивных изотопов (более 200) расположены в периодической системе в в области тяжелых ядер (Z > 83). Известно также около 20 альфа-радиоактивных изотопов среди редкоземельных элементов, кроме того, альфа-радиоактивность характерна для ядер, находящихся вблизи границы протонной стабильности. Это обусловлено тем, что альфа-распад связан с кулоновским отталкиванием, которое возрастает по мере увеличения размеров ядер быстрее (как Z2), чем ядерные силы притяжения, которые растут линейно с ростом массового числа A.
Ядро альфа-радиоактивно, если выполнено условие, являющееся следствием закона сохранения энергии

M(A,Z) >M(A-4,Z-2) + Mα, (1)

где M(A,Z) и M(A-4,Z-2) - массы покоя исходного и конечного ядер соответственно, Mα- масса альфа-частицы. При этом в результате распада конечное ядро и альфа-частица приобретают суммарную кинетическую энергию

Qα = (M(A,Z) - M(A-4,Z-2) - Mα) с2, (2)

которая называется энергией альфа-распада. Ядра могут испытывать альфа-распад также на возбужденные состояния конечных ядер и из возбужденных состояний начальных ядер. Поэтому соотношение для энергии альфа-распада (2) можно обобщить следующим образом

Qα = (M(A,Z) - M(A-4,Z-2) - Mα) с2 + -, (3)

где и - энергии возбуждения начального и конечного ядер соответственно. Альфа-частицы, возникающие в результате распада возбужденных состояний, получили название длиннопробежных. Для большинства ядер с A > 190 и для многих ядер с 150 < A < 190 условие (12) выполняется, однако далеко не все они считаются альфа-радиоактивными. Дело в том, что современные экспериментальные возможности не позволяют обнаружить альфа-радиоактивность для нуклидов с периодом полураспада большим, чем 1016 лет. Кроме того, часть “потенциально” альфа-радиоактивных ядер испытывают также бета-распад, который сильно конкурирует с альфа-распадом.
Основную часть энергии альфа-распада (около 98%) уносят альфа-частицы. Используя законы сохранения энергии и импульса для кинетической энергии альфа-частицы Tα можно получить соотношение

  (4)

Периоды полураспада известных альфа-радиоактивных нуклидов варьируются от 0.298 мкс для 212Po до >1015 лет для 144Nd, 174Hf... Энергия альфа-частиц, испускаемых тяжелыми ядрами из основных состояний, составляет 4 - 9 МэВ, ядрами редкоземельных элементов 2 - 4.5 МэВ.
Важным свойством альфа-распада является то, что при небольшом изменении энергии альфа-частиц периоды полураспада меняются на многие порядки. Так у 232Th Qα = 4.08 МэВ, T1/2 = 1.41·1010 лет, а у 218Th Qα = 9.85 МэВ, T1/2 = 10 мкс. Изменению энергии в 2 раза соответствует изменение в периоде полураспада на 24 порядка.
Для четно-четных изотопов одного элемента зависимость периода полураспада от энергии альфа-распада хорошо описывается эмпирическим законом Гейгера - Неттола

lg T1/2 = A + B/(Qα)1/2, (5)

где A и B - константы слабо зависящие от Z. С учетом заряда дочернего ядра Z связь между периодом полураспада T1/2 и энергией альфа-распада Qα может быть представлено в виде (B.A. Brown, Phys. Rev. c46, 811 (1992))

lg T1/2 = 9.54Z0.6/(Qα)1/2 - 51.37, (6)

где T1/2 в сек, Qα в МэВ. На рис. 1 показаны экспериментальные значения периодов полураспада для 119 альфа-радиоактивных четно-четных ядер (Z от 74 до 106) и их описание с помощью соотношения (6).

Рис. 1.

Для нечетно-четных, четно-нечетных и нечетно-нечетных ядер общая тенденция сохраняется, но их периоды полураспада в 2 - 1000 раз больше, чем для четно-четных ядер с данными Z и Qα.
Основные особенности альфа-распада, в частности сильную зависимость вероятности альфа-распада от энергии удалось в 1928 г. объяснитьГ. Гамову и независимо от него Р. Герни и Э. Кондону. Ими было показано, что вероятность альфа-распада в основном определяется вероятностью прохождения альфа-частицы сквозь потенциальный барьер.
Рассмотрим простую модель альфа-распада. Предполагается, что альфа-частица движется в сферической области радиуса R, где R - радиус ядра. Т.е. в этой модели предполагается, что альфа-частица постоянно существует в ядре.
Вероятность альфа-распада равна произведению вероятности найти альфа-частицу на границе ядра f на вероятность ee прохождения через потенциальный барьер D (прозрачность барьера)

λ = fD = ln2/T1/2. (7)

Можно отожествить f с числом соударений в единицу времени, которые испытывает альфа-частица о внутренние границы барьера, тогда

  (8)

где v, Ta, a - скорость внутри ядра, кинетическая энергия и приведенная масса альфа-частицы, V0 - ядерный потенциал. Подставив в выражение (8) V0 = 35 МэВ, Ta = 5 МэВ, получим для ядер с A 200, f 1021 с-1.
Hа рис.2 показана зависимость потенциальной энергии между альфа-частицей и остаточным ядром от расстояния между их центрами. Кулоновский потенциал обрезается на расстоянии R, которое приблизительно равно радиусу остаточного ядра. Высота кулоновского барьера Bkопределяется соотношением

МэВ (9)

Здесь Z и z - заряды (в единицах заряда электрона e) остаточного ядра и альфа-частицы соответственно. Например для 238U Bk 30 МэВ.

Можно выделить три области.

  1. r < R - сферическая потенциальная яма глубиной V. В классической механике альфа-частица с кинетической энергией Ta+ V0 может двигаться в этой области, но не способна ее покинуть. В этой области существенно сильное взаимодействие между альфа-частицей и остаточным ядром.
  2. R < r < re - область потенциального барьера, в которой потенциальная энергия больше энергии альфа-частицы, т.е. это область запрещенная для классической частицы.
  3. r > re - область вне потенциального барьера. В квантовой механике возможно прохождение альфа-частицы сквозь барьер (туннелирование), однако вероятность этого весьма мала.
Рис. 5

(Аналогично влияние кулоновского барьера и в случае ядерной реакции, когда альфа-частица подлетает к ядру. Если ее энергия меньше высоты кулоновского барьера, она скорее всего рассеется кулоновским полем ядра, не проникнув в него и не вызвав ядерной реакции. Вероятность таких подбарьерных реакций очень мала.)

Квантово-механическое решение задачи о прохождении частицы через потенциальный барьер дает для вероятности прохождения (коэффициента прозрачности барьера) D

 

 

  (10)

где μα- приведенная масса, Tα - энергия α-частицы. В приближении Tα << Bk, где Bk - высота кулоновского барьера (предполагается, что барьер чисто кулоновский) описывается соотношением

  (11)

Рассчитанные по формулам (7), (8) и (11) периоды полураспада правильно передают важнейшую закономерность альфа-распада - сильную зависимость периода полураспадаT1/2 от энергии альфа-частиц Tα (энергии альфа-распада Qα Tα). При изменении периодов полураспада более чем на 20 порядков отличия экспериментальных значений от расчетных всего 1-2 порядка. Конечно, такие расхождения все же довольно велики. Где их источник и как надо усовершенствовать теорию, чтобы эти расхождения с экспериментом уменьшить? Какие факторы должны быть дополнительно учтены?

1. Приведенные выше формулы описывают эмиссию альфа-частиц с нулевым орбитальным моментом l. Однако возможен распад и с ненулевым орбитальным моментом, более того, в ряде случаев распад с l = 0 запрещен законами сохранения. В этом случае к кулоновскому Vk(r)добавляется центробежный потенциал Vц(r)

V(r) = Vk (r) + Vц (r), (12)

2.

  (13)

3. Хотя высота центробежного барьера для тяжелых ядер при l = 8 составляет всего около 10% от высоты кулоновского барьера и центробежный потенциал спадает быстрее, чем кулоновский, эффект вполне ощутим и для больших l может приводить к подавлению альфа-распада более, чем на 2 порядка.

4. Результаты расчетов прозрачности барьера весьма чувствительны к средним радиусам ядер R. Так изменение R всего на 4% приводит к изменению T1/2 в 5 раз. Между тем, ядра с A > 230 могут быть сильно деформированы, что приводит к тому, что альфа-частицы охотнее вылетают вдоль большой оси эллипсоида, а средняя вероятность вылета отличается от таковой для сферического ядра. Большую чувствительность периодов полураспада от радиусов можно использовать, определяя радиусы ядер по экспериментальным значениям периодов полураспада.

5. Выше никак не учитывалась структура состояний начального и конечного ядер и тесно связанная с этим проблема образования альфа-частицы в ядре, вероятность которой молчаливо полагалась равной 1. Для четно-четных ядер это приближение довольно хорошо описывает эксперимент. Однако, если перестройка структуры исходных ядер в конечные заметно затруднена, то необходимые для учета этих эффектов модификации предэкспоненциального множителя f, могут приводить к изменению расчетных значений приблизительно на два порядка.

 


<== предыдущая | следующая ==>
Продолжение: март 2016 | Оценка редактором читательской аудитории

Date: 2016-07-20; view: 268; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию