Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Действие радиации на растения.





 

Биологический эффект ионизирующего излучения является результатом влияния радиации на многих уровнях — от моле­кулярного до организменного и популяционного. Первичные механизмы действия всех типов излучения на живой организм сходны. Их общая особенность состоит в том, что значи­тельный биологический эффект вызывается слабой энергией и небольшим числом первичных радиационно-химических ре­акций. Например, при гамма-облучении дозой около 10 Гр летальной для млекопитающих, поглощается энер­гия, равная 8,4 кДж/г, достаточная лишь для повышения тем­пературы на 0,001 °С.

Различают прямое и косвенное действие радиации на живые организмы.

Прямое действие состоит в радиационно-хи­мических превращениях молекул в месте поглощения энергии излучения. Прямое попадание в молекулу переводит ее в возбу­жденное или ионизированное состояние. Поражающее действие связано с ионизацией молекулы.

Непрямое или косвенное действие радиации состоит в повреждениях молекул, мембран, органоидов, клеток, вызываемых продуктами радиолиза воды, количество которых в клетке при облучении очень велико.

Заряженная частица излучения, взаимодействуя с молекулой воды, вызывает ее ионизацию:

 

γ → H2O → H2O+ + e-

e → H2O → H2O-

 

Ионы воды за время жизни 10-15 – 10 -10с способны образовать химически активные свободные радикалы и пероксиды:

H2O+ → H+ + ОН

H2O- → H· + ОН

OH + OH → H2O2

В присутствии растворенного в воде кислорода возникают также мощный окислитель HO2 и новые пероксиды и т. д.

Эти сильные окислители за время жизни 10-6 – 10 -5с могут повредить (изменить) многие биологически важные молекулы — нуклеиновые кислоты, белки-ферменты, липиды мембран и др. Кроме того, при взаимодействии радикалов воды с органическими веществами в присутствии кислорода образуются органические пероксиды, что также способствует лучевому повреждению молекул и структур клетки.

Прямое действие радиации на молекулы объясняют теория «мишеней или попаданий» и вероятностная гипотеза. Согласно первой попадание ионизирующей частицы в чувствительную часть (мишень) молекулы или структуры клетки вызывает ее повреждение, генетические изменения и гибель. Обнаружено, что с увеличением дозы количество повреждений в облучаемом объеме увеличивается в геометрической прогрессии, причем повреждение может быть результатом как одного попадания, так и нескольких. По вероятностной гипотезе взаимодействие излучения с мишенью происходит по принципу случайности, а реакция на излучение зависит от состояния биологической системы в момент действия излучения.

Дальнейшие этапы развития лучевого поражения связаны с непрямым действием ионизирующих излучений. Повреждения, возникшие первоначально, могут усиливаться (развиваться):

· вследствие возникновения под действием излучений радиотоксинов (липидных пероксидов, хинонов и др.), приводящих к автоокислению липидов мембран, окислению SH-групп мембранных белков, нарушению функционирования систем транспорта в мембранных образованиях клеток

· при накоплении ошибок в процессах репликации ДНК, синтеза РНК и белков;

· из-за повреждения ферментов, обеспечивающих синтез биологически важных соединений и т. д.

Для клетки наиболее опасно нарушение облучением уникальной структуры ДНК. При прямом действии излучения на молекулу ДНК происходят разрывы связей сахар-фосфат, дезаминирование азотистых оснований, образование димеров пиримидиновых оснований (чаще других тимина) т. д. Эти повреждения могут накапливаться. Другие изменения касаются радиационных влияний на ядерную мембрану и хроматин. На структуре хроматина сказываются депротеинизация участков ДНК и активация ДНКаз как следствие нарушения проницаемости ядерной мембраны.

Облучение может также инактивировать ферменты, участвующие в репарации повреждений молекулы ДНК. Эти и другие повреждения как на уровне ДНК, так и хроматина в конечном счете выражаются в изменениях белкового синтеза, прохождения фаз клеточного цикла, в образовании хромосомных аберраций, увеличении частоты мутаций в клетках, нарушении систем регуляции и гибели клетки.

 

Из тканей растительного организма наиболее уязвимы для радиации меристемы. Их называют критическими тканями растения, поскольку лучевое поражение меристем определяет лучевую болезнь и гибель всего организма.

Наименее радиоустойчивы вегетирующие растения: летальные дозы облучения для проростков высокочувствительных к радиации кормовых бобов (6 — 8 Гр, или 0,6 — 0,8 кр) и гороха (10—15 Гр, или 1,0—1,5 кр) сравнимы с летальными дозами облучения для многих млекопитающих (около 10 Гр, или 1 кр). Облучение приводит к разнообразным морфологическим аномалиям у растений (изменение размеров, скручивание и морщинистость листьев, гипертрофия органов, появление опухолевидных образований на всех органах).

Прорастание семян у разных растений (наблюдения до восьмидневного возраста) подавляется значительно более высокими дозами - от 1 до 35 кГр (100-3500 кр). Радиочувствительность семян зависит также от глубины покоя, проницаемости семенных оболочек для кислорода, содержания в них воды и т. д.

Значительно изменяется радиоустойчивость в онтогенезе растений. Так, формирующиеся семена злаков наиболее чувствительны в фазе молочной спелости. При полном созревании радиоустойчивость семян возрастает до максимума. Начало прорастания приводит к значительному снижению радиоустойчивости, которая несколько возрастает к периоду заложения оси соцветия, но вновь снижается во время споро- и гаметогенеза. Таким образом, растение наиболее чувствительно к облучению при прорастании семян и в период споро- и гаметогенеза.

Одноклеточные растения наиболее устойчивы к облучению сразу после окончания деления и в конце фазы синтеза ДНК.

Устойчивость растений к действию радиации определяется рядом факторов как на молекулярном, так и на более высоких уровнях организации:

 

v Степень радиационного повреждения молекул ДНК в клетке уменьшают системы восстановления ДНК, независимые (темновая репарация) или зависимые от света. Системы темновой репарации ДНК, постоянно присутствующие в клетке, отыскивают поврежденный участок, разрушают его и восстанавливают целостность молекулы ДНК. Под влиянием света ферментативным или неферментативным путем устраняются ди- пиримидиновых оснований, возникающие в ДНК при действии ультрафиолетового света или ионизирующего излучения. Такого рода восстановление целостности ДНК способствует также уменьшению повреждений (изменений) и в хромосомах.

v Защиту на уровне клетки осуществляют вещества-радиопротекторы. Их функция состоит в гашении свободных радикалов, возникающих при облучении, в создании локального недостатка кислорода или в блокировании реакций с участием продуктов — производных радиационно-химических процессов. Функцию радиопротекторов выполняют сульфгидрильные соединения (глутатион, цистеин, цистеамин и др.) и такие восстановители, как аскорбиновая кислота; ионы металлов и элементы питания (бор, висмут, железо, калий, кальций, кобальт, магний, натрий, сера, фосфор, цинк); ряд ферментов и кофакторов (каталаза, пероксидаза, полифенолоксидаза, цитохром NAD); ингибиторы метаболизма (фенолы, хиноны); активаторы (ИУК, кинетин, гибберелловая кислота) и ингибиторы роста (абсцизовая кислота, кумарин) и др.

v Восстановление на уровне организма обеспечивается у растений:

· неоднородностью популяции делящихся клеток меристем, которые содержат клетки с разной интенсивностью деления;

· асинхронностью делений в меристемах, так что в каждый данный момент в них содержатся клетки на разных фазах митотического цикла с неодинаковой радиоустойчивостью;

· существованием в апикальных меристемах фонда клеток типа покоящегося центра, которые приступают к энергичному делению при остановке деления клеток основной меристемы и восстанавливают как инициальные клетки, так и меристему;

· наличием покоящихся меристем типа спящих почек, которые при гибели апикальных меристем начинают активно функционировать и восстанавливают повреждение.

Все эти механизмы защиты и восстановления не являютсяспецифичными только для растений и поэтому их изучение важно для решения проблемы радиоустойчивости как растений, так и других живых организмов.

 

 

Date: 2016-07-05; view: 1777; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию