Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Испарительные насосы





Конструкция испарительного насоса в основном определяется типом испарителя. Испарители бывают прямонакальные, подогревные, электронно-лучевые и дуговые. В качестве прямонакального испарителя (рис. 5.21, а) используется биметаллическая проволока с молибденовым керном, на который иодидным способом осажден слой титана.

Подогревный испаритель (рис. 5.21, б) представляет собой сферическую оболочку из активного материала, внутри которой вставлен проволочный нагреватель. Для титана максимальная рабочая температура таких испарителей составляет 1150°С, что обеспечивает максимальную скорость испарения 1 мг/c.

Электронно-лучевой испаритель (рис.5.21,а) представляет собой электронную пушку с вольфрамовым катодом 1, помещенную в поперечное магнитное поле. Магнитное поле позволяет разместить пушку вне зоны нанесения активного материала. Между пушкой и мишенью прикладывается ускоряющее напряжение в несколько тысяч вольт. Максимальная скорость испарения из жидкой фазы может достигать 30 мг/c.

 

 

 

Рисунок 5.21 – Конструкции испарителей для насосов

 

В дуговых испарителях (рис. 5.21, б) активный материал распыляется в катодном пятне дуги постоянного тока. Катодное пятно хаотически перемещается по поверхности охлаждаемого водой катода из титана. Плотность тока в пятне достигает 108 KА/м2. Дуга горит в парах испаряемого материала, что позволяет поддерживать разряд даже в условиях сверхвысокого вакуума. Возбуждение дуги происходит, например, при коротком замыкании подвижного электрода. Питание дуги осуществляется от источника постоянного тока с U=30...50 В и I=100... 180 А. Максимальное давление запуска не превышает 10 Па. При больших давлениях анодное пятно становится неподвижным и может расплавить стенку насоса. Скорость испарения в дуговых испарителях может достигать 20 мг/с. В насосах испарительного типа, не имеющих устройств для ионной откачки, предельное давление составляет обычно 10-7 Па. Охлаждение активной пленки до температуры жидкого азота снижает предельное давление до 10-11 Па.

Верхний предел рабочих давлений, равный 10-2 Па, лимитируется образованием во время работы испарителя оксидов, нитридов и карбидов на поверхности активного материала, что приводит к уменьшению скорости испарения. Максимальная быстрота действия насосов такого типа при откачке водорода достигает 2-105 л/c. Применение испарительных насосов неэффективно при откачке продуктов органического происхождения и инертных газов.

Испарительный насос (рис. 5.22) состоит из корпуса 4, в котором размещается испаритель 5. Атомы активного металла, вылетающие из испарителя, конденсируются на экранах 2 и обеспечивают откачку химически активных газов. Экран 3 защищает откачиваемый объект, присоединяемый к насосу через фланец 1, от проникновения паров испаряемого материала. Экраны 2 для повышения быстроты откачки могут охлаждаться жидким азотом.

 

Рисунок 5.22 – Испарительный насос

 

Гетероионные насосы

Ионно-сорбционная откачка использует два типа поглощения газа: внедрение ионов в объем твердого тела под действием электрического поля и химического взаимодействие откачиваемых газов с тонкими пленками активных металлов. Высокоэнергетичные ионы или нейтральные частицы, бомбардируя твердое тело, проникают в него на глубину достаточную для их растворения. Это ионная откачка. При откачке существует предельное количество поглощенного газа единицей объема тела. При максимально допустимом значении поглощения газа может объединиться в пузырьки и разорвать металл. Это явление получило название «блистер-эффект».

Сорбционное поглощение пленками получаемыми при ионном распылении, откачиваемых газов называется хемосорбционной откачкой.

Показателем активности пленки, получаемой ионным распылением, является теплота адсорбции поглощаемого газа на материале пленки. Для H2 – 19,3 кДж/моль, CO – 419, N2 – 356, О2 – 813, Ar – 8,38. Все газы, кроме инертных, поглощают за счет хемосорбции. Инертные газы плохо откачиваются за счет хемосорбции. Материал распыляемых пленок Ti, Zr, Ta, Ba, Mo, W, Hf. На рис.5.23 приведена конструкция гетероионного насоса.

Ионизация газа производится следующим образом – электроны, эмитированные катодом 1, ускоряются сеткой ионизируют газы и пары Ti. Образовавшиеся ионы ускоряются по направлению к внутренней стенке насоса, действующий как коллектор ионов. Там ионы удерживаются и вместе с нейтральными молекулами газа, диффундирующими к стенке, оказываются погребенными под новыми, располагающимися сверху слоями газопоглотителя.

При скорости испарения Ti 5,3 мг/мин и давлении порядка 10-6 мм. рт. ст. быстрота откачки насоса для H2 составляет 3000 л/см, для N2 – 2000 и O2 – 1000 л/см, Ar – 5 л/см. предварительное давление, т.е. давление, при котором насос начинает работать, равно 10-2 мм. рт. ст., предельный вакуум 10-10 мм. рт. ст.

 

 

1 – накаливаемый катод, 2 – сетка, 3 – впускной патрубок, 4 – коллектор ионов, 5 – кольцеобразный катод, 6 – выпускной патрубок, 7 – тигель для распыления титана нагреваемый электронной бомбардировкой (является анодом U = 750В), 8 – катушка с запасом тита­новой проволоки, 9 – слой осажденного титана с заключенными в нем молеку­лами газа, 10 – охлаждение

 

Рисунок 5.23 – Конструкция гетероионного насоса

 

Преимущество гетероионных насосов – возможность получения хорошего вакуума без паров масла, и возможность в ходе откачки работы без включения насоса предварительного вакуума.

Недостатки – наличие опасностей внезапного выброса газа из осажденных слоев, низкое откачивающее действие по отношению к инертным газам, ограниченный ресурс работы.

 

Date: 2016-07-18; view: 540; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.009 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию