Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Классификация кинематических пар.





Механизм. Машина.

МАШИНЫ И МЕХАНИЗМЫ -механические устройства, облегчающие труд и повышающие его производительность. Машины могут быть разной степени сложности – от простой одноколесной тачки до лифтов, автомобилей, печатных, текстильных, вычислительных машин. Энергетические машины преобразуют один вид энергии в другой. Например, генераторы гидроэлектростанции преобразуют механическую энергию падающей воды в электрическую энергию. Двигатель внутреннего сгорания преобразует химическую энергию бензина в тепловую, а затем в механическую энергию движения автомобиля. Так называемые рабочие машины преобразуют свойства или состояние материалов (металлорежущие станки, транспортные машины) либо информацию (вычислительные машины).

Машины состоят из механизмов (двигательного, передаточного и исполнительного) – многозвенных устройств, передающих и преобразующих силу и движение. Простой механизм, называемый полиспастом, увеличивает силу, приложенную к грузу, и за счет этого позволяет вручную поднимать тяжелые предметы. Другие механизмы облегчают работу, увеличивая скорость. Так, велосипедная цепь, входящая в зацепление со звездочкой, преобразует медленное вращение педалей в быстрое вращение заднего колеса. Однако механизмы, увеличивающие скорость, делают это за счет уменьшения силы, а увеличивающие силу – за счет уменьшения скорости. Увеличить одновременно и скорость, и силу невозможно. Механизмы могут также просто изменять направление силы. Пример – блок на конце флагштока: чтобы поднять флаг, тянут за шнур вниз. Изменение направления может сочетаться с увеличением силы или скорости. Так, тяжелый груз можно приподнять, нажимая на рычаг вниз.

Машинный агрегат.

Понятие «машина» может быть в обобщенном виде выражено следующим образом: машина – есть устройство, выполняющее механические движения для преобразования энергии, материалов и информации в целях замены или облегчения физического и умственного труда человека.

 

С точки зрения выполняемых функций машины можно разделить на следующие классы:

- энергетические машины

- рабочие машины

- информационные машины

- кибернетические машины.

 

Энергетической машиной называется машина, предназначенная для преобразования любого вида энергии в механическую, и наоборот. В первом случае она носит название машины-двигателя, во втором случае – машины-генератора.

 

Рабочей машиной называется машина, предназначенная для преобразования материалов. Рабочие машины подразделяются на транспортные и технологические. Транспортной машиной называется рабочая машина, в которой преобразование материала состоит только в изменении положения основного перемещаемого объекта. Технологической машиной называется рабочая машина, в которой преобразование материала состоит в изменении формы, свойства и состояния материала или обрабатываемого объекта.

 

Информационной машиной называется машина для получения и преобразования информации. Информационные машины подразделяются на контрольно-управляющие и математические машины. Контрольно-управляющая машина преобразует получаемую контрольно-измерительную информацию с целью управления энергетической или рабочей машинами. Математическая машина преобразует информацию, получаемую в виде различных математических образов, заданных в форме отдельных чисел или алгоритмов.

 

Кибернетической машиной называется машина, заменяющая или имитирующая различные механические, физиологические или биологические процессы, присущие человеку и живой природе, и обладающая элементами искусственного интеллекта. Техническое устройство, предназначенное для воспроизведения рабочих функций руки человека, называется манипулятором. Манипуляторы с автоматическим управлением могут использоваться для работы во вредных условиях, для механизации однообразных и утомительных работ на быстродействующих конвейерах, операциях по перестановке и упаковке деталей и т.д. В этих случаях манипуляторы с автоматическим управлением называют обычно промышленными роботами.

 

Процессы преобразования энергии, материалов и информации, выполняемые машиной, в некоторых случаях происходят без непосредственного участия человека. Такие машины получили название машин-автоматов.

 

Машины-автоматы исключают участие человека в выполнении самого технологического процесса, но обычно требуют присутствия операторов, т.е. людей, следящих за работой машин-автоматов, определяющих программу их работы и корректирующих в необходимых случаях работу механизмов и специальных устройств автоматики. Совокупность машин-автоматов, соединенных между собой и предназначенных для выполнения определенного технологического процесса, называется автоматической линией.

 

Развитое машинное устройство, состоящее из двигателя, передаточных механизмов и рабочей машины (а в некоторых случаях контрольно-управляющих и счетно-решающих устройств) называется машинным агрегатом.

Виды механизмов.

Механизмы, входящие в состав машины, весьма разнообразны. Одни из них представляют собой сочетание только твердых тел, другие имеют в своем составе гидравлические, пневматические тела или электрические, магнитные и другие устройства. Соответственно такие механизмы называются гидравлическими, пневматическими, электрическими и т.д. С точки зрения их функционального назначения механизмы обычно делятся на следующие виды:

  • механизмы двигателей и преобразователей
  • передаточные механизмы
  • исполнительные механизмы
  • механизмы управления, контроля и регулирования
  • механизмы подачи, транспортировки, питания и сортировки обрабатываемых сред и объектов
  • механизмы автоматического счета, взвешивания и упаковки готовой продукции.

Механизмы двигателей осуществляют преобразование различных видов энергии в механическую работу (например, механизмы двигателей внутреннего сгорания, паровых машин, электродвигателей, турбин и др.).

Механизмы преобразователей (генераторов) осуществляют преобразование механической работы в другие виды энергии (например, механизмы насосов, компрессоров, гидроприводов и др.).

Передаточный механизм (привод) имеет своей задачей передачу движения от двигателя к технологической машине или исполнительному механизму, преобразуя это движение в необходимое для работы данной технологической машины или исполнительного механизма.

Исполнительный механизм – это механизм, который непосредственно воздействует на обрабатываемую среду или объект. В его задачу входит изменение формы, состояния, положения и свойств обрабатываемой среды или объекта (например, механизмы металлообрабатывающих станков, прессов, конвейеров, прокатных станов, экскаваторов, грузоподъемных машин и др.).

Механизмами управления, контроля и регулирования называются различные механизмы и устройства для обеспечения и контроля размеров обрабатываемых объектов (например, измерительные механизмы по контролю размеров, давления, уровней жидкости; регуляторы, реагирующие на отклонение угловой скорости главного вала машины и устанавливающие заданную скорость этого вала; механизм, регулирующий постоянство расстояния между валками прокатного стана, и т.д.).

К механизмам подачи транспортировки, питания и сортировки обрабатываемых сред и объектов относятся механизмы винтовых шнеков, скребковых и ковшевых элеваторов для транспортировки и подачи сыпучих материалов, механизмы загрузочных бункеров для штучных заготовок, механизмы сортировки готовой продукции по размерам, весу, конфигурации и т.д.

Механизмы автоматического счета, взвешивания и упаковки готовой продукции применяются во многих машинах, в основном выпускающих массовую штучную продукцию. Надо иметь в виду, что эти механизмы могут быть и исполнительными механизмами, если они входят в специальные машины, предназначенные для этих целей.

Данная классификация показывает лишь многообразие функционального применения механизмов, которая может быть еще значительно расширена. Однако для выполнения различных функций часто применяются механизмы, имеющие одинаковое строение, кинематику и динамику. Поэтому для изучения в теории механизмов и машин выделяются механизмы, имеющие общие методы их синтеза и анализа работы, независимо от их функционального предназначения. С этой точки зрения выделяются следующие виды механизмов:

  • механизмы с низшими парами (рычажные механизмы)
  • кулачковые механизмы
  • зубчатые механизмы
  • фрикционные механизмы
  • механизмы с гибкими связями
  • механизмы с деформируемыми звеньями (волновые передачи)
  • гидравлические и пневматические механизмы.

4. Деталь, звено, кинематическая пара.

Деталь

Деталь – составная часть механического устройства, выполненная без применения сборочных операций (например: болт, гайка, вал, станина станка, полученная литьем и т.д.).

Деталь является элементарной составной частью машины. Типы деталей, их расчет, выбор формы, создание рабочего чертежа подробно рассматриваются в курсе «Детали машин и основы конструирования». В теории механизмов и машин в качестве элементарной составной части рассматривается более сложная конструкция – звено.

Звено

Звено – это деталь или группа деталей, представляющих с кинематической точки зрения единое целое (т.е. группа деталей, жестко соединенных между собой и движущихся как единое твердое тело).

В реальном механизме звенья часто имеют довольно сложную конфигурацию (конструкцию), поэтому при анализе и синтезе механизмов используют кинематические схемы. Кинематическая схема – это условное изображение звеньев и всего механизма, выполненное строго в масштабе.

При составлении кинематической схемы выделяются основные элементы звена, которыми оно присоединяется к другим звеньям механизма (отверстия, направляющие и т.д.). Эти элементы изображаются условно (например, отверстии – в виде окружностей произвольного радиуса) и соединяются жесткими стержнями. На рисунке 1в представлена кинематическая схема шатуна, изображенного на рисунке 1б.

Под масштабом в теории механизмов и машин понимают количество истинных единиц измеряемой величины, заключенное в одном миллиметре чертежа. Другими словами – это «цена» одного миллиметра. Такое понимание масштаба (иногда его называют масштабным коэффициентом) очень удобно при анализе работы механизма, т.к. является универсальным и позволяет представлять в виде отрезка любую физическую величину, что очень важно при использовании графических и графоаналитических методов исследования.

Масштаб в такой интерпретации является размерной величиной. Обычно истинная величина представляется без черты над ее обозначением, а обозначение с чертой (аналогично обозначению вектора) представляет собой отрезок на чертеже в миллиметрах, изображающий данную величину.

В зависимости от характера движения звенья могут иметь собственные названия. Ниже приведены некоторые из них:

  • кривошип – звено, совершающее вращательное движение вокруг неподвижной оси и делающее при этом полный оборот;
  • коромысло – звено, совершающее возвратно-вращательное движение;
  • ползун – звено, движущееся поступательно;
  • шатун – звено, совершающее сложное плоско-параллельное движение;
  • кулиса – коромысло (или, иногда, кривошип), по которому движется ползун;
  • стойка – звено, принятое за неподвижное (по определению звена стойка в механизме может быть только одна – все неподвижные детали обязательно крепятся на некоторой станине, корпусе, картере, основании и представляют одну жесткую конструкцию, т.е. одно звено).

На кинематической схеме стойка обычно изображается в виде отдельных фрагментов в тех местах, где к ней присоединяются другие звенья механизма, что резко упрощает эту схему.

Кинематическая пара

Кинематической парой называется подвижное соединение двух звеньев.

Классификация кинематических пар.

Кинематические пары классифицируются по различным признакам:

1) по числу связей, накладываемых на относительное движение звеньев, соединенных в кинематическую пару. По этому признаку кинематические пары подразделяются на классы. Приняты следующие обозначения:

W – число степеней свободы
S – число связей, накладываемых на относительное движение звеньев.

Свободное звено в пространстве имеет шесть степеней свободы. При соединении звеньев некоторые из этих степеней свободы отнимаются ("накладываются связи"). Зависимость между числом накладываемых связей и оставшимся числом степеней свободы в относительном движении звеньев очевидна:

W=6–S

или

S=6–W,

таким образом, существует пять классов кинематических пар (если отнять все шесть степеней свободы, то получится неподвижное соединение).

На рисунке 2 приведены примеры некоторых кинематических пар.

а) W = 5 S = 1 => I кл.   б) W = 4 S = 2 => II кл.   в) W = 3 S = 3 => III кл.   г)

Рисунок 2

Шар относительно плоскости (рисунок 2б), не отрываясь от нее, может совершать вращательные движения вокруг всех трех осей координат, а также двигаться вдоль осей "X" и "Y". При движении вдоль оси "Z" шар оторвется от плоскости, т.е. будет два свободных звена – кинематическая пара перестанет существовать. Таким образом, на относительное движение звеньев накладывается одна связь – это кинематическая пара I класса.

Аналогично без нарушения характера контакта нельзя цилиндр переместить вдоль оси "Z" и повернуть вокруг оси "Y" (рисунок 2в), т.е. число связей равно двум – пара II класса. Плоскость относительно другой плоскости без нарушения характера контакта может двигаться поступательно вдоль осей "X" и "Y", а также вращаться вокруг оси "Z". Невозможно поступательное движение вдоль оси "Z" и вращательные движения вокруг осей "X" и "Y" (рисунок 2г). Таким образом, число связей равно трем – кинематическая пара III класса.

Примечание: если в кинематической паре имеются два функционально связанных движения (одно без другого существовать не может), то они дают одну степень свободы.

Например, болт с гайкой составляют кинематическую пару пятого класса. В данном случае имеется два движения гайки при неподвижном болте – вращательное движение вокруг оси болта и поступательное движение вдоль этой оси, но нельзя переместить гайку вдоль оси, не повернув ее, или повернуть гайку так, чтобы она не переместилась вдоль оси. Более того, зная параметры резьбы, легко определить зависимость между углом поворота и поступательным перемещением гайки.

Эти два движения образуют одно сложное (в данном случае – винтовое) движение. Оно определяет одну степень свободы в относительном движении этих звеньев, т.е. число связей равно пяти;

2) по характеру контакта звеньев, соединенных в кинематическую пару. По этому признаку кинематические пары подразделяются на высшие и низшие. Высшие пары имеют точечный или линейный контакт звеньев, составляющих данную кинематическую пару.

В низшей паре звенья контактируют друг с другом по какой-либо поверхности (в частном случае по плоскости).

Низшие кинематические пары обладают большей несущей способностью, т.к. имеют большую площадь контакта (в высшей паре площадь контакта теоретически равна нулю, а реально получается за счет деформации элементов кинематической пары – «пятно контакта"). Но в низших парах при работе происходит скольжение одной поверхности относительно другой, в то время как в высших парах может происходить и скольжение, и качение.

Как правило, сопротивление скольжению больше, чем сопротивление перекатыванию одной поверхности относительно другой, т.е. потери на трение в высшей паре (если использовать только качение) меньше по сравнению с низшей парой (поэтому для увеличения коэффициента полезного действия вместо подшипников скольжения обычно ставят подшипники качения).

Кинематические пары, изображенные на рисунке 2б и 2в, являются высшими, а пара на рисунке 2г – низшая кинематическая пара;

3) по траектории движения точек, принадлежащих звеньям, составляющим кинематическую пару. По этому признаку выделяют пространственные и плоские кинематические пары.

В плоской кинематической паре все точки движутся в одной или в параллельных плоскостях, а траектории их движения представляют собой плоские кривые. В пространственных парах точки движутся в различных плоскостях и имеют траектории в виде пространственных кривых.

Значительное число механизмов, применяемых на практике, являются плоскими механизмами (по классификации И.И. Артоболевского – механизмами третьего семейства), поэтому необходимо более подробно рассмотреть плоские кинематические пары.

Свободное звено, помещенное в плоскость, имеет три степени свободы (поступательные движения вдоль осей координат и вращательное вокруг оси, перпендикулярной данной плоскости). Таким образом, размещение звена в плоскости отнимает у него три степени свободы (накладывает три связи). Но соединение данного звена с другим в кинематическую пару накладывает на относительное движение еще связи (минимальное число – 1). В результате на плоскости могут существовать только кинематические пары, имеющие две или одну степень свободы в относительном движении.

По общей классификации это пары четвертого и пятого классов. Простейшие пары пятого класса обеспечивают только одно движение – вращательное или поступательное (вращательная кинематическая пара в технике называется шарниром, поступательную пару по аналогии с поступательно движущимся звеном иногда также называют ползуном).

Две степени свободы в относительном движении на плоскости обычно обеспечивают два соприкасающихся профиля (на кинематической схеме контакт в точке, в реальном механизме это возможно линия, которая проецируется в точку). Таким образом, плоские кинематические пары пятого класса (шарниры и ползуны) одновременно являются низшими парами, а кинематические пары четвертого класса – высшими парами.

На рисунке 3 показано схематическое изображение плоских кинематических пар.

4) по характеру замыкания звеньев, соединенных в кинематическую пару. Существует два вида кинематических пар, отличающихся друг от друга по этому признаку. Кинематические пары с геометрическим замыканием и кинематические пары с силовым замыканием.

В парах с геометрическим замыканием конфигурация звеньев препятствует их разъединению в процессе работы. Например, присоединение шатуна к коленчатому валу при помощи шатунной крышки, или любые другие шарниры (дверь с косяком, окно с оконной рамой и т.д.).

В парах с силовым замыканием контакт звеньев в процессе работы обеспечивается постоянно действующей силой. На рисунке 2 все кинематические пары являются парами с силовым замыканием, причем в качестве замыкающей силы выступает вес. Если веса недостаточно, то обычно для создания прижимающего усилия применяют различные упругие элементы (чаще всего пружины).

Date: 2016-07-18; view: 1282; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию