Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Устройство обнаружения радиомикрофонов





В сложившихся условиях выбор устройства, предназначенного для выявления радиомикрофонов, является непростой задачей, требующей учета различных, часто взаимоисключающих факторов.

Цены на устройства обнаружения радиомикрофонов на отечественном рынке спецтехники колеблются от нескольких сотен до десятков тысяч долларов, в зависимости от класса прибора. В настоящее время на нем присутствует достаточно большое число систем, предназначенных для решения широкого круга задач по обнаружению радиомикрофонов и слухового контроля сигналов от различных передающих средств. При этом выделяются две основные группы устройств:

· относительно простые (хотя, зачастую, и обладающие рядом дополнительных функций), которые можно условно отнести к классу “детекторов поля”;

· сложные (и, как следствие, дорогие) компьютеризированные системы, которые можно условно отнести к классу корреляторов.

Первые не позволяют по целому ряду причин уверенно обнаруживать микрорадиопередающие устройства в условиях помещений, насыщенных связной, вычислительной, оргтехникой и различными коммуникациями, особенно если объекты расположены в промышленных центрах со сложной помеховой обстановкой.

Вторые обладают достаточно высокими характеристиками и набором разнообразных функций, но требуют при этом от пользователя достаточно серьезной подготовки, а их стоимость в 4–15 раз превышает стоимость устройств первого класса.

Обычно при разработке или выборе аппаратуры обнаружения ставятся следующие задачи:

· прибор должен иметь функцию корреляции, позволяющую малоподготовленному пользователю достаточно надежно выявлять наличие простых микрорадиопередающих устройств;

· эксплуатация прибора должна быть максимально проста;

· должна обеспечиваться возможность модернизации до уровня новых версий;

· цена прибора должна попадать в интервал цен между первым и вторым классом.

Таким образом, рационально выбирать такую аппаратуру обнаружения, в которой вместо ПЭВМ используются программируемые контролеры. Такой подход, с одной стороны, является более дешевым, а с другой — позволяет обеспечить максимальную простоту управления в сочетании с возможностью простой программно-аппаратной модернизацией. Обычно устройства контроля содержат:

· радиоприемное устройство (AR-8000);

· микропроцессорное устройство управления;

· сетевой адаптер питания;

· выносную антенну-пробник;

· головные телефоны.

Устройство позволяет осуществлять поиск радиомикрофонов в следующих режимах:

· обзор заданного оператором диапазона частот с остановкой при обнаружении радиомикрофона;

· дежурный режим с постоянным обзором заданного диапазона с фиксацией в памяти значений частот обнаруженных радиопередатчиков;

· определение местоположения обнаруженных радиомикрофонов с помощью выносной антенны-пробника.

Задание режимов производится с микропроцессорного блока управления. Рабочий диапазон частот — 500 кГц – 1,9 ГГц.

Обнаружение записывающих устройств (диктофонов)

В настоящее время широкое распространение получила скрытая запись на диктофоны как способ документирования речевой информации.

Каким требованиям должен соответствовать обнаружитель диктофонов (ОД)? Всего нескольким: быстро и скрытно обнаруживать любые диктофоны на приемлемом расстоянии и сигнализировать об этом. Однако способы достижения указанных целей могут сильно различаться в зависимости от того, должен ли ОД быть портативным, обслуживать офис или большой зал заседаний. Таким образом, существует потребность в целом спектре устройств.

Однако существующие модели (RS100, RS200, PTRD 014-017, APK) обладают невысокой дальностью и не могут в полной мере удовлетворить пользователей. Причина такого положения заключается в сложности самой задачи обнаружения диктофонов. Прежде всего, она в том, что собственное излучение объекта является сверхслабым. Поэтому для его обнаружения приходится использовать сверхчувствительные каналы получения информации. При этом возникает другая проблема. Прибор очень чувствителен, он “видит”: компьютеры за стеной, изменения в сети 220 В × 50 Гц, пол я от проходящего транспорта и т.д. Все эти сигналы немного превосходят по уровню измеряемый сигнал и являются помехами, поэтому приходится решать задачу обнаружения слабых сигналов в сложной помеховой обстановке.

Физические принципы

Установлено, что практически единственным информативным параметром, который может быть использован в целях обнаружения диктофонов, является переменное магнитное поле. Значимых источников этого поля в диктофонах всего два: включенный электродвигатель и электрические цепи генератора тока стирания и подмагничивания. Первые ОД (TRD, TRD 800) реагировали на поля, создаваемые генератором. Это резко снижает практическую ценность таких ОД, поскольку в подавляющем числе моделей современных диктофонов генераторы не используются.

Данное обстоятельство заставило разработчиков ОД сконцентрировать усилия на создание приборов, регистрирующих магнитное поле работающего электродвигателя диктофона. Основным параметром ОД, в первую очередь интересующим пользователя, является максимальная дальность обнаружения. Для оценки этого параметра достаточно знать уровень поля, создаваемого диктофоном в окружающем пространстве, и величину пороговой чувствительности датчика.

В первом приближении физической моделью диктофона можно считать магнитный диполь, основной характеристикой которого является величина дипольного момента. Для различных типов диктофонов этот момент имеет значения от 10-5 А · м2 до 10-4 А · м2.

В реальной ситуации фактором, ограничивающим дальность обнаружения, являются помехи. Диапазон частот, в котором сосредоточена основная энергия поля диктофона, составляет 50–400 Гц. Этот диапазон очень сложен для измерений, поскольку именно здесь “разместились” наиболее мощные помехи. В первую очередь, это магнитные поля токов промышленной частоты 220 В 50 Гц и ее гармоник. Уровень их колеблется в интервале от 10-4 до 10-1 А · м2.

Еще один источник помех — компьютер, особенно его дисплей. Величина эквивалентного магнитного момента дисплея может достигать 1 А · м2. Свой вклад в помеховую обстановку вносят и множество других источников: телефоны, телефаксы, копировальная техника и различные электробытовые приборы. Следовательно, динамический диапазон измерительного тракта должен быть не менее 100 дБ.

Требования к динамическому диапазону могут быть снижены до реально осуществимых при использовании дифференциальных датчиков (градиентометров), измеряющих разность значений поля в двух точках, разнесенных на расстояние d. При этом достигается ослабление поля пропорциональное d/R, где R — расстояние до источников помех. В большинстве практических применений при d = 0,1 м ослабление составляет 20–30 дБ. Платой за это является уменьшение потенциально достижимой дальности обнаружения R= 1,0 – 1,8 м.

Возможен еще один принцип построения ОД. Ток, протекающий в цепях электродвигателя диктофона, содержит четко выраженную импульсную составляющую. Это приводит к размазыванию спектра частот до десятков килогерц. Использование ВЧ части спектра 5–15 кГц позволяет существенно уменьшить габариты датчика и упростить схему обработки.

Основная задача, решаемая при создании ОД, — это отстройка от мощных помех. Она может быть решена двумя способами: аналоговым и цифровым.

Одной из главных проблем, с которой столкнулись потребители при использовании аналоговых моделей, оказалась необходимость подстройки приборов к сложной помеховой обстановке. При этом вследствие изменчивости среды приборы каждый раз нуждались в новой подстройке. Таким образом, от опыта пользователя зависела работоспособность ОД и их адаптация к нестационарным условиям.

Более перспективной является цифровая технология, позволяющая реализовать функции подстройки в приборе и осуществлять более мощную отстройку от помех. Однако сложность задачи синтеза четкого и однозначного поведения прибора для любых ситуаций, возникающих по мере поступления текущей информации, не позволяла до последнего времени выпускать такие модели ОД.

Цифровой путь управления ОД связан с синтезом алгоритмов обработки сигналов. При этом ввиду сложности задачи приходится использовать не один алгоритм, а совокупность технологий цифровой обработки.

Спектральный анализ

В некоторых моделях ОД обнаружение осуществляется во временн о й области по изменению мощности сигнала в одном или двух пространственных или частотных каналах. Такой анализ осложнен тем, что мощность сигналов и помех суммируется и поэтому сигналы становятся неразличимыми.

Эту сложность можно преодолеть переходом на N-мерное спектральное пространство, где помехи и сигналы разделены по различным компонентам спектра. К сожалению, такой переход удается реализовать для временн о й координаты сигнала.

Переход в спектральное пространство равносилен использованию решетки градиентометров, каждый из которых работает на своей частоте (так называемых спектральных градиентометров).

Наиболее подходящим является спектральное представление в базисе гармонических функций из-за периодического характера сигналов диктофонов и большинства помех, что позволяет получить компактные спектры.

Задача заключается в обнаружении новых компонентов спектра, возникающих при появлении работающего диктофона. Соотношение амплитуд помеха/сигнал может достигать значения 1000 единиц.

Диктофон может быть обнаружен, если гармонический сигнал на соответствующей частоте превышает шум. Увеличение дальности обнаружения за счет уменьшения шумового порога достигается накоплением спектров. Однако значительное увеличение количества накапливаемых спектров может привести к недопустимо большому времени обнаружения. Поэтому целесообразно использовать скользящие оценки спектра.

Спектральный пик сигнала неизвестной частоты возникает в многокомпонентном спектре, соседствуя, а иногда и совпадая с мощными пиками сторонних источников, связанных со сложной электромагнитной обстановкой.

В разных областях техники задачу обнаружения энергетически слабого события решают по-разному. При поиске магнитных аномалий со спутников используют карты магнитного поля, составленные на основе многолетних наблюдений. При обработке изображений осуществляют режекцию фона. В ОД некоторых моделей выполняют предварительную балансировку каналов.

Предварительную балансировку можно применить и для компонентов спектра сигнала градиентометра. Предположим, что спектр содержит две составляющие: стабильную помеховую и сигнальную, которая возникает в случае включения диктофона.

Проведем “обучение” прибора в условиях, когда достоверно отсутствуют диктофоны. При этом можно оценить статистические характеристики фона, в частности, его спектр — шаблон S(f,0). На этапе обнаружения измеряется разность между текущим спектром и пороговым спектром-шаблоном: С(f,t) = S(f,t) – S(f,0). Сглаживая во времени разностный спектр, получим критериальную функцию [С(f,t)] = [S(f,t)] – [S(f,0)]. Правило обнаружения при этом формулируется как превышение критериальной функции спектрального порога:

С(f,t) > С(t)

Значение порога определяется уровнем помех, собственными шумами каналов обнаружителя, временем накопления информации, а также заданной вероятностью обнаружения и допустимой вероятностью ложной тревоги.

Данная процедура эквивалентна балансировке каждого из спектральных градиентометров, при этом разбалансировка является следствием появления сигнала. С другой стороны критеральная функция является, по существу, градиентом во времени. Индикатором появления диктофона является возникновение неравномерности во времени и возрастание градиента выше порогового уровня. При этом частоты диктофона и помехи могут совпадать.

Если бы все сводилось к стабильному фону, который можно запомнить перед сеансом контроля, то задача обнаружения была бы решена. Необходимо было бы в течение достаточно длительного времени обучать систему окружающей обстановке. Однако реально дела обстоят сложнее. Во время контроля возникают дополнительные помехи или фоновые компоненты: от транспорта, изменения параметров сети, офисной техники. Поэтому шаблон за время сеанса контроля существенно устаревает. Сама модель стабильного фона, к сожалению, является лишь условностью, которая на практике часто не соблюдается. Поэтому приходится привлекать дополнительные алгоритмы: распознавание событий и многоканальную адаптивную фильтрацию.

Date: 2016-11-17; view: 353; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию