Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Жарық интерференциясы





Гюйгенс приципі.

Жарықтың толқындық теориясы Гюйгенс приципіне негізделген. Ол былай тұжырымдалады: толқын таралғанда жететін нүкте келесі (екінші ретті) толқындардың көзі болады. Ал осы толқындардың таралғанда пайда болатын беті толқындық фронт деп аталады.

Гюйгенс принципін пайдалана отырып, жарықтың шағылу және сыну заңдары қорытып шығаруға болады.

Айталық, екі ортаның бөліну шегарасына I бойымен бағытталған жазық толқын түссін (АВ – жазық толқын). (t - уақытында) жарық фронты ВС қашықтығын жүрсе, екінші ретті толқындардың фронты А нүктесінен АD қашықтығын жүреді. Жарық шағылғанда: , сәйкесінше .

Жарық сынғанда: t – уақытында түскен толқынның фронты ВС=v1t жол жүреді, ал сынған толқынның фронты - AD=v2 t.

қатынасынан келесі қатынастар шығады:

 

8. Когеренттілік.

Бірнеше тербелмелі немесе толқындық үрдістердің уақыт және кеңістік бойынша үйлесімді (өзара байланысты) өтуі когеренттілік деп аталады.

Жиілігі белгілі бір мәнге тең және тұрақты болатын толқындар монохромат толқындар деп аталады. Монохромат толқындар – когерентті толқындар болып табылады.

Табиғи жарық көздері монохромат жарық шығармайды, сондықтан кез келген бір-бірінен тәуелсіз жарық көздері шығаратын толқындар әрқашан когерентті бола бермейді. Жарық көзінде атомдар жарық шығарады, ал олардың әрқайсысы өте аз ≈10-8с уақыт аралығында жарық шығарады.

Тек осы уақыт аралығында ғана атом шығаратын толқындардың амплитудасы мен тербелу фазасы тұрақты болады.

Монохромат емес жарық көзін атомдар шығаратын бір - бірін алмастыратын қысқа гормониялық импулсьтердің жиынтығы ретінде қарастыруға болады. Осы жиынтық толқындық цуг деп аталады.

Бір цугтың орташа жалғасу уақыты когеренттілік уақыты деп аталады.

Егер толқын бір текті ортада таралатын болса, онда тербелу фазасы кеңістіктің белгілі бір нүктесінде тек когеренттілік уақытында ғана сақталады. Бұл уақыт аралығында толқын вакуумда жол жүреді, осы жүрген жол когеренттілік ұзындығы (немесе цугтың ұзындығы) деп аталады. Сол себепті жарық интерференциясын, пайдаланып отырған жарық көзі үшін, тек когеренттілік ұзындығынан аз оптикалық жол айырымдарда бақылау мүмкін.

Уақыттық когеренттілік - толқынның монохроматтық дәрежесімен анықталатын тербелістердің когеренттілігі. Осы тербелістер кеңістіктің белгілі бір нүктесінде орын алады. Уақыттық когеренттілік тек толқынның фазалық айырмасы берілген нүктеде π-ге тең болғанша жалғасады.

Когерентілік ұзындығы - когеренттілік уақыт аралығында толқынның жүріп өткен жолы.

Толқынның цугы таралу бағытына перпендикуляр жазықтықта екі нүктенің арасындағы фазалық айырымның кездейсоқ өзгерісі осы нүктелердің арақашықтығының өсуімен бірге өседі.

Кеңістіктік когеренттілік - тербелістердің бір уақыт мезетіндегі, бірақ осындай жазықтықтың әр түрлі нүктелеріндегі когеренттілік.Егер осы нүктелерде фазалардың айырмасы π -ге тең болса,кеңістіктік когеренттілік жоғалады.

Кеңістіктік когеренттіліктің ұзындығы (когеренттілік радиусы):

мұндағы λ - толқын ұзындығы, –фазалар айырмасы.

Жарық интерфренциясын бақылау үшін жарық көздері шығаратын толқындар кеңістіктік когерентті болу керек.

 

9. Жарық интерференциясы.

Екі немесе одан да көп когерентті жарық толқындарының кеңістікте қабаттасуынан пайда болатын құбылыс жарық интерференциясы деп аталады. Жарық толқындарының кеңістікте қабаттасуының нәтижесінде кеңістіктің әр түрлі нүктелерінде қорытқы толқынның амплитудасы күшейеді немесе әлсірейді.

Айталық, берілген M нүктесінде циклдік жиілігі екі монохромат толқын екі тербеліс тудырсын және М нүктесіне дейін бір толқын сыну көрсеткіші n1 ортадан фазалық жылдамдықпен s1 жол жүрсін, ал екінші толқын n2 ортадан фазалық жылдамдықпен s2 жолын жүрсін:

 

 

Қорытқы тербелістің амплитудасы:

Қорытқы толқынның интенсивтілігі :

М нүктесінде пайда болған тербелістердің фазаларының айырмасы төмендегі өрнекпен анықталады:

 

(мұндағы ; - толқынның вакуумдағы ұзындығы).

Жарық толқынының берілген ортадағы s жолының геометриялық ұзындығының осы ортаның n сыну көрсеткішіне көбейтіндісі жолдың оптикалық ұзындығы деп аталады:

Толқындардың жүрген жолдарының оптикалық ұзындықтарының айырмасы жолдың оптикалық айырмасы деп аталады.

Интерференцияның максимум шарты.

Егер оптикалық жол айырмасы вакуумдағы толқын ұзындықтарының бүтін санына тең болса (жарты толқынның жұп санына):

Онда және М нүктесінде пайда болған тербелістер бірдей фазада таралады.

Интерференцияның минимум шарты.

Егер оптикалық жол айырмасы жарты толқынның тақ санына тең болса,

Онда және М нүктесінде пайда болған тербелістер бір-біріне қарама-қарсы фазада таралады.

 

10. Интерференцияны бақылау әдістері.

Лазерлер ойлап табылғанға дейін барлық құралдарда когерентті жарық шоғын толқындарды бөлу арқылы алатын. Ол толқындар бір жарық көзінен таралып екі бөлікке бөлініп, әр түрлі оптикалық жол жүргеннен кейін бір-бірімен қабаттасу нәтижесінде интерференциялық сурет бақыланатын.

 


1. Юнг әдісі. Жарық S саңылаудан шығып когерентті жарық көздерінің міндетін атқаратын екі S1 және S2 саңылауға түседі. ВС интерференциялық суреті Э экранда бақыланады

2. Френель айналары. S жарық көзінен шыққан жарық шашырайтын шоқ болып екі А1О және А2О жазық айнаға түседі. Бұл айналар аз φ бұрыш жасай орналасқан. S –тің жорамал бейнелері, S1 және S2, когерентті жарық көздерінің қызметін атқарады. Интерференциялық бейне экранда бақыланады. Ал Э экранға жарық тікелей түспеу үшін оның алдына Б бөгеті қойылған.

3. Френель бипризмасы. S жарық көзінен шыққан жарық призмадан сынып өткенде екі S1 және S2 жорамал когерентті жарық көзінен шыққандай таралады.

4. Ллойд айнасы. S нүктелік жарық көзі М жазық айнаның бетіне жақын орналасқан. S жарық көзі және оның S1 жорамал кескіні когерентті жарық көздерінің қызметін атқарады.

Date: 2016-05-25; view: 3644; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию