Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Измерение электрического сопротивления





Измерение методом амперметра и вольтметра. Сопротивление какой-либо электрической установки или участка электрической цепи можно определить с помощью амперметра и вольтметра, пользуясь законом Ома. При включении приборов по схеме рис. 339, а через амперметр проходит не только измеряемый ток Ix, но и ток Iv, протекающий через вольтметр. Поэтому сопротивление

Rx = U / (I – U/R v ) (110)

где Rv — сопротивление вольтметра.

При включении приборов по схеме рис. 339, б вольтметр будет измерять не только падение напряжения Ux на определенном сопротивлении, но и падение напряжения в обмотке амперметра UA = IRА. Поэтому

Rx = U/I – RА (111)

где RА — сопротивление амперметра.

В тех случаях, когда сопротивления приборов неизвестны и, следовательно, не могут быть учтены, нужно при измерении малых сопротивлений пользоваться схемой рис. 339,а, а при измерении больших сопротивлений — схемой рис. 339, б. При этом погрешность измерений, определяемая в первой схеме током Iv, а во второй — падением напряжения UА, будет невелика по сравнению с током Ix и напряжением Ux.

Измерение сопротивлений электрическими мостами. Мостовая схема (рис. 340,а) состоит из источника питания, чувствительного прибора (гальванометра Г) и четырех резисторов, включаемых в плечи моста: с неизвестным сопротивлением Rx (R4) и известными сопротивлениями R1, R2, R3, которые могут при измерениях изменяться. Прибор включают в одну из диагоналей моста (измерительную), а источник питания — в другую (питающую).

Сопротивления R1 R2 и R3 можно подобрать такими, что при замыкании контакта В показания прибора будут равны нулю (в та-

Рис. 339. Схемы для измерения сопротивления методом амперметра и вольтметра

Рис. 340. Мостовые схемы постоянного тока, применяемые для измерения сопротивлений

ком случае принято говорить, что мост уравновешен). При этом неизвестное сопротивление

Rx = (R1/R2)R3 (112)

В некоторых мостах отношение плеч R1/R2 установлено постоянным, а равновесие моста достигается только подбором сопротивления R3. В других, наоборот, сопротивление R3 постоянно, а равновесие достигается подбором сопротивлений R1 и R2.

Измерение сопротивления мостом постоянного тока осуществляется следующим образом. К зажимам 1 и 2 присоединяют неизвестное сопротивление Rx (например, обмотку электрической машины или аппарата), к зажимам 3 и 4 — гальванометр, а к зажимам 5 и 6 — источник питания (сухой гальванический элемент или аккумулятор). Затем, изменяя сопротивления R1, R2 и R3 (в качестве которых используют магазины сопротивлений, переключаемые соответствующими контактами), добиваются равновесия моста, которое определяется по нулевому показанию гальванометра (при замкнутом контакте В).

Существуют различные конструкции мостов постоянного тока, при использовании которых не требуется выполнять вычисления, так как неизвестное сопротивление Rx отсчитывают по шкале прибора. Смонтированные в них магазины сопротивлений позволяют измерять сопротивления от 10 до 100 000 Ом.

При измерении малых сопротивлений обычными мостами сопротивления соединительных проводов и контактных соединений вносят большие погрешности в результаты измерения. Для их устранения применяют двойные мосты постоянного тока (рис. 340,б). В этих мостах провода, соединяющие резистор с измеряемым сопротивлением Rx и некоторый образцовый резистор с сопротивлением R0 с другими резисторами моста, и их контактные соединения оказываются включенными последовательно с резисторами соответствующих плеч, сопротивление которых устанавливается не менее 10 Ом. Поэтому они практически не влияют на результаты измерений. Провода же, соединяющие резисторы с сопротивлениями Rx и R0, входят в цепь питания и не влияют на условия равновесия моста. Поэтому точность измерения малых сопротивлений довольно высокая. Мост выполняют так, чтобы при регулировках его соблюдались следующие условия: R1 = R2 и R3 = R4. В этом случае

Rx = R0R1/R4 (113)

Двойные мосты позволяют измерить сопротивления от 10 до 0,000001 Ом.

Если мост не уравновешен, то стрелка в гальванометре будет отклоняться от нулевого положения, так как ток измерительной диагонали при неизменных значениях сопротивлений R1, R2, R3 и э. д. с. источника тока будет зависеть только от изменения сопротивления Rx. Это позволяет проградуировать шкалу гальванометра в единицах сопротивления Rx или каких-либо других единицах (температура, давление и пр.), от которых зависит это сопротивление. Поэтому неуравновешенный мост постоянного тока широко используют в различных устройствах для измерения неэлектрических величин электрическими методами.

Применяют также различные мосты переменного тока, которые дают возможность измерить с большой точностью индуктивности и емкости.

Измерение омметром. Омметр представляет собой миллиамперметр 1 с магнитоэлектрическим измерительным механизмом и включается последовательно с измеряемым сопротивлением Rx (рис. 341) и добавочным резистором RД в цепь постоянного тока. При неизменных э. д. с. источника и сопротивления резистора RД ток в цепи зависит только от сопротивления Rx. Это позволяет отградуировать шкалу прибора непосредственно в омах. Если выходные зажимы прибора 2 и 3 замкнуты накоротко (см. штриховую линию), то ток I в цепи максимален и стрелка прибора отклоняется вправо на наибольший угол; на шкале этому соответствует сопротивление, равное нулю. Если цепь прибора разомкнута, то I = 0 и стрелка находится в начале шкалы; этому положению соответствует сопротивление, равное бесконечности.

Питание прибора осуществляется от сухого гальванического элемента 4, который устанавливается в корпусе прибора. Прибор будет давать правильные показания только в том случае, если источник тока имеет неизменную э. д. с. (такую же, как и при градуировке шкалы прибора). В некоторых омметрах имеются два или несколько пределов измерения, например от 0 до 100 Ом и от 0 до 10 000 Ом. В зависимости от этого резистор с измеряемым сопротивлением Rx подключают к различным зажимам.

Измерение больших сопротивлений мегаомметрами. Для измерения сопротивления изоляции чаще всего применяют мегаомметры магнитоэлектрической системы. В качестве измерительного механизма в них использован логометр 2 (рис. 342), показания кото-

Рис. 341. Схема включения омметра

Рис. 342. Устройство мегаомметра

рого не зависят от напряжения источника тока, питающего измерительные цепи. Катушки 1 и 3 прибора находятся в магнитном поле постоянного магнита и подключены к общему источнику питания 4.

Последовательно с одной катушкой включают добавочный резистор Rд, в цепь другой катушки — резистор сопротивлением Rx.

В качестве источника тока обычно используют небольшой генератор 4 постоянного тока, называемый индуктором; якорь генератора приводят во вращение рукояткой, соединенной с ним через редуктор. Индукторы имеют значительные напряжения от 250 до 2500 В, благодаря чему мегаомметром можно измерять большие сопротивления.

При взаимодействии протекающих по катушкам токов I1 и I2 с магнитным полем постоянного магнита создаются два противоположно направленных момента М1 и М2, под влиянием которых подвижная часть прибора и стрелка будут занимать определенное положение. Как было показано в § 100, положение подвижной

Рис. 343. Общий вид мегаомметра (а) и его упрощенная схема (б)

части логометра зависит от отношения I1/I2. Следовательно, при изменении Rx будет изменяться угол? отклонения стрелки. Шкала мегаомметра градуируется непосредственно в килоомах или мегаомах (рис. 343, а).

Чтобы измерить сопротивление изоляции между проводами, необходимо отключить их от источника тока (от сети) и присоединить один провод к зажиму Л (линия) (рис. 343,б), а другой — к зажиму 3 (земля). Затем, вращая рукоятку индуктора 1 мегаомметра, определяют по шкале логометра 2 сопротивление изоляции. Имеющийся в приборе переключатель 3 позволяет изменять пределы измерения. Напряжение индуктора, а следовательно, частота вращения его рукоятки теоретически не оказывают влияние на результаты измерений, но практически рекомендуется вращать ее более или менее равномерно.

При измерении сопротивления изоляции между обмотками электрической машины отсоединяют их друг от друга и соединяют одну из них с зажимом Л, а другую с зажимом 3, после чего, вращая рукоятку индуктора, определяют сопротивление изоляции. При измерении сопротивления изоляции обмотки относительно корпуса его соединяют с зажимом 3, а обмотку — с зажимом Л.

Индуктивность служит для характеристики магнитных свойств электрической цепи. Ее определяют как коэффициент пропорциональности между текущим электрическим током и магнитным потоком в замкнутом контуре. Поток создается этим током через поверхность контура. Еще одно определение гласит, что индуктивность является параметром электрической цепи и определяет ЭДС самоиндукции. Термин применяется для указания элемента цепи и приходится характеристикой эффекта самоиндукции, который был открыт Д. Генри и М. Фарадеем независимо друг от друга. Индуктивность связана с формой, размером контура и значением магнитной проницаемости окружающей среды. В единице измерения СИ эта величина измеряется в генри и обозначается как L. Самоиндукция и измерение индуктивности Индуктивностью называется величина, которая равна отношению магнитного потока, проходящего по всем виткам контура к силе тока: L = N х F: I. Индуктивность контура находится в зависимости от формы, размеров контура и от магнитных свойств среды, в которой он находится. Если в замкнутом контуре протекает электрический ток, то возникает изменяющееся магнитное поле. Это впоследствии приведет к возникновению ЭДС. Рождение индукционного тока в замкнутом контуре носит название "самоиндукция". По правилу Ленца величина не дает изменяться току в контуре. Если обнаруживается самоиндукция, то можно применять электрическую цепь, в которой параллельно включены резистор и катушка с железным сердечником. Последовательно с ними подсоединены и электрические лампы. В этом случае сопротивление резистора равно сопротивлению на постоянном токе катушки. Результатом будет яркое горение ламп. Явление самоиндукции занимает одно из главных мест в радиотехнике и электротехнике. Как найти индуктивность Формула, которая является простейшей для нахождения величины, следующая: L = F: I, где F – магнитный поток, I – ток в контуре. Через индуктивность можно выразить ЭДС самоиндукции: Ei = -L х dI: dt. Из формулы напрашивается вывод о численном равенстве индукции с ЭДС, которое возникает в контуре при изменении силы тока на один амперметр за одну секунду. Переменная индуктивность дает возможность найти и энергию магнитного поля: W = L I2: 2. "Катушка ниток" Катушка индуктивности представляет собой намотанную изолированную медную проволоку на твердое основание. Что касается изоляции, то выбор материала широк – это и лак, и проводная изоляция, и ткань. Величина магнитного потока зависит от площади цилиндра. Если увеличить ток в катушке, то магнитное поле будет становиться все больше и наоборот. Если подать электрический ток на катушку, то в ней возникнет напряжение, противоположное напряжению тока, но оно внезапно исчезает. Такого рода напряжение называется электродвижущей силой самоиндукции. В момент включения напряжения на катушку сила тока меняет свое значение от 0 до некоего числа. Напряжение в этот момент тоже меняет значение, согласно закону Ома: I = U: R, где I характеризует силу тока, U – показывает напряжение, R – сопротивление катушки. Еще одной особенной чертой катушки является следующий факт: если разомкнуть цепь "катушка – источник тока", то ЭДС добавится к напряжению. Ток тоже вначале вырастет, а потом пойдет на спад. Отсюда вытекает первый закон коммутации, в котором говорится, что сила тока в катушке индуктивности мгновенно не меняется. Катушку можно разделить на два вида: С магнитным наконечником. В роли материала сердца выступают ферриты и железо. Сердечники служат для повышения индуктивности. С немагнитным. Используются в случаях, когда индуктивность не больше пяти миллиГенри. Устройства различаются и по внешнему виду, и внутреннему строению. В зависимости от таких параметров находится индуктивность катушки. Формула в каждом случае разная. Например, для однослойной катушки индуктивность будет равна: L = 10µ0ΠN2R2: 9R + 10l. А вот уже для многослойной другая формула: L= µ0N2R2: 2Π(6R + 9l + 10w). Основные выводы, связанные с работой катушек: На цилиндрическом феррите самая большая индуктивность возникает в середине. Для получения максимальной индуктивности необходимо близко наматывать витки на катушку. Индуктивность тем меньше, чем меньше количество витков. В тороидальном сердечнике расстояние между витками не играет роли катушки. Значение индуктивности зависит от "витков в квадрате". Если последовательно соединить индуктивности, то их общее значение равно сумме индуктивностей. При параллельном соединении нужно следить, чтобы индуктивности были разнесены на плате. В противном случае их показания будут неправильными за счет взаимного влияния магнитных полей.

Измерительные мосты

Одинарные мосты постоянного тока предназначены для измерения сопротивлений величиной от 10 Ом и более. Схема одинарного моста приведена на рисунке:

Диагональ, обозначенная на рисунке bd- называется диагональю питания. В нее включен источник питания (батарея) G. Диагональ ас называется измерительной диагональю. В нее включен указатель равновесия (гальванометр) Р. Условия равновесия моста: . В качестве практического примера приведены параметры моста Р-369. Диапазон измеряемых сопротивлений: 10-4…1.11111*1010 Ом. Класс точности в диапазоне до 10-3 Ом- 1 и при измерении сопротивлений от1 до 103Ом класс точности - 0.005.

Для точных измерений сопротивлений малой величины применяют двойные мосты постоянного тока. Схема двойного моста представлена на рисунке:

В процессе измерения измеряемое сопротивление Rx сравнивается с образцовым сопротивлением R0. Сопротивление неизвестного резистора в случае равновесия моста можно выразить следующим образом:

;

Двойные мосты позволяют измерять сопротивления в диапазоне 10-8…1.11111*1010 Ом.

Мосты переменного тока применяются для измерения, как активных, так и реактивных сопротивлений (емкостных и индуктивных). В качестве элементов моста в этом случае могут использоваться реактивные элементы – емкости и индуктивности. Уравнения равновесия записываются по аналогии с мостами постоянного тока.

В последние годы для измерений параметров электрических цепей часто применяют автоматические мосты и компенсаторы, в которых процесс уравновешивания моста происходит автоматически (при помощи реверсивного двигателя или электронной схемы). Особенно актуально применение автоматических мостов в высокоточных цифровых измерительных устройствах

 

Измерение сопротивлений

Сопротивление постоянному току измеряестся как приборами непосредственной оценки – омметрами, так и мостами. Омметры чаще всего выполняют на основе магнитоэлектрического механизма. Диапазон измерений омметров: от десятитысячных долей ома до сотен мегом. Погрешность измерения омметров обычно от 1 до нескольких процентов, но резко возрастает на краях шкалы. Широкое распространение в последнее время получили цифровые многопредельные омметры, чаще всего входящие в состав универсальных цифровых измерительных приборов. Наиболее точно сопротивление можно измерить при помощи мостов постоянного тока.

Измерение емкости и индуктивности

Производится в основном при помощи мостов переменного тока с частотами питания 100-1000 Гц. Чаще всего мосты для измерения сопротивления, емкости и индуктивности совмещаются в одном приборе – универсальном измерительном мосте. Такие приборы могут измерять индуктивность от долей микрогенри до тысяч генри, емкость – от сотых долей пикофарад до тысяч микрофарад. Погрешность универсальных мостов обычно не превышает сотых долей процента.

«СОГЛАСОВАНО»

Date: 2016-05-25; view: 938; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию