Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Принцип независимости действия сил



Допущение о малости деформаций делает возможным применение принципа независимости действия сил. Этот принцип в сопротивлении материалов формулируется следующим образом: результат одновременного действия нескольких групп сил совпадает с суммой результатов, вызванных каждой группой сил в отдельности.

Для доказательства данного принципа рассмотрим двухопорную балку, изображенную на рис. 1.14. Приложим в некоторой произвольной точке силу Р1, которая вызовет в точке А перемещение , которое равно , где - коэффициент пропорциональности. Теперь устраним действие силы Р1 и в некоторой другой произвольной точке приложим силу Р2, от действия которой точка переместится на величину .

Очевидно, что коэффициенты пропорциональности и не равны между собой, так как силы Р1 и Р2 приложены в разных точках балки.

P2
fA2
fA1
P1
A
P2
A
fA1+fA2
P1
A

Рис. 1.14. Принцип независимости действия сил

 

Рассмотрим теперь совместное действие сил Р1 и Р2. Приложим сначала силу Р1, а затем, не снимая ее, силу Р2. Тогда суммарное перемещение точки А можно определить по формуле . Коэффициент будет иметь тоже значение, т.к. сила Р1 была приложена к ненагруженной балке, коэффициент же пропорциональности для силы Р2 обозначен как , т.к. сила Р2 приложена к системе, на которую уже действует сила Р1. Если коэффициенты и различны, то следует признать, что коэффициент зависит от силы Р1 (даже имеющей нулевое значение), но это противоречит принятому предположению, о линейной зависимости перемещений от действующей силы. Следовательно, и тогда . Видно, что суммарное перемещение в точке А определяется как сумма перемещений от независимых действий сил Р1 и Р2.



Таким образом, принцип независимости действия сил (принцип суперпозиции) сформулируем так: результат воздействия нескольких внешних факторов равен сумме результатов воздействия каждого из них, прикладываемого в отдельности, и не зависит от последовательности их приложения.

 

4. Закон Гука

При малых деформациях большинство тел можно считать линейно-упругими. Это означает, что при снятии внешней нагрузки тело полностью восстанавливает свою форму и размеры (идеальная упругость), и, кроме того, наблюдается линейная связь между силами P и смещениями D:

P=kD,

где k – коэффициент пропорциональности (жесткости), зависящий от вида и материала конструкции.

Действующие на упругое тело внешние силы совершают над ним работу. Эта работа, согласно закону сохранения механической энергии, переходит в потенциальную энергию упругой деформации. При сделанных выше допущениях и в предположении о квазистатическом приложении силы P потенциальная энергия легко определяется с помощью теоремы Клапейрона.

При медленном (квазистатическом) нагружении вся работа внешней нагрузки переходит в потенциальную энергию U:

.

Рассмотрим пример работы под нагрузкой консольного стержня (рис. 1.15а) или двухопорной балки (рис. 1.15б), на которые действует сила P. При этом характерные точки обеих систем переместятся на величину D, а при дополнительном нагружении - на .

 

Рис. 1.15. К определению работы внешних сил

 

Элементарная работа равна (рис. 1.15в) .

Полная работа, совершаемая силой Р, вызвавшей перемещение , будет

.

Этот интеграл представляет собой заштрихованную площадь диаграммы, и, значит, для линейно-упругой системы будет численно равен площади треугольника:

.

Данное равенство называется теоремой Клапейрона и имеет очень большое значение при исследовании перемещений различных упругих систем.

При действии на систему нескольких сил (n) теорема Клапейрона принимает вид:

.

 

 








Date: 2016-05-24; view: 49; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.008 sec.) - Пожаловаться на публикацию