Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Виды коррозии в системе сбора





Коррозия – это разрушение металлов в результате химического или электрохимического воздействия окружающей среды, это окислительно-восстановительный гетерогенный процесс, происходящий на поверхности раздела фаз.

Хотя механизм коррозии в разных условиях различен, по виду разрушения поверхности металла различают:

Равномерную или общую коррозию, т.е. равномерно распределенную по поверхности металла. Пример: ржавление железа, потускнение серебра.

Местную или локальную коррозию, т.е. сосредоточенную на отдельных участках поверхности. Местная коррозия бывает различных видов:

В виде пятен – поражение распространяется сравнительно неглубоко и занимает относительно большие участки поверхности;

В виде язв – глубокие поражения локализуются на небольших учасках поверхности;

В виде точек (питтинговая) - размеры еще меньше язвенных разъеданий.

Межкристаллитную коррозию – характеризующуюся разрушением металла по границам кристаллитов (зерен металла). Процесс протекает быстро, глубоко и вызывает катастрофическое разрушение.

Избирательную коррозию – избирательно растворяется один или несколько компонентов сплава, после чего остается пористый остаток, который сохраняет первоначальную форму и кажется неповрежденным.

Коррозионное растрескивание происходит, если металл подвергается постоянному растягивающему напряжению в коррозионной среде. КР может быть вызвано абсорбцией водорода, образовавшегося в процессе коррозии.

По механизму протекания различают химическую и электрохимическую коррозию.

Химическая коррозия характерна для сред не проводящих электрический ток.

Коррозия стали в водной среде происходит вследствие протекания электрохимических реакций, т.е. реакций сопровождающихся протеканием электрического тока. Скорость коррозии при этом возрастает.

Электрохимическая коррозия возникает в результате работы множества макро- или микрогальванопар в металле, соприкасающемся с электролитом.

Причины возникновения гальванических пар в металлах:

Соприкосновение двух разнородных металлов;

Наличие в металле примесей;

Наличие участков с различным кристаллическим строением;

Образование пор в окисной пленке;

Наличие участков с различной механической нагрузкой;

Наличие участков с неравномерным доступом активных компонентов внешней среды, например, воздуха,

и, таким образом, образуются гальванические элементы, микропары, то есть образуются анодные и катодные участки. Анодом является металл с более высоким отрицательным потенциалом, катодом является металл с меньшим потенциалом. Между ними возникает электрический ток.

Процесс коррозии можно представить следующим образом.

На аноде: (реакция окисления)

Fe - 2 e ® Fe 2+ (1)

На анодных участках атомы железа переходят в раствор в виде гидратированных катионов Fe 2+, то есть происходит анодное растворение металла и процесс коррозии распространяется вглубь металла.

Оставшиеся свободные электроны перемещаются по металлу к катодным участкам.

На катоде: (реакция восстановления)

2 Н+ + 2 e ® 2 Нaдс. (2)

При рН < 4,3 происходит разряд всегда присутствующих в воде ионов водорода и образование атомов водорода с последующим образованием молекулярного водорода:

Н + Н ® Н2 ­. (3)

При рН > 4,3 доминирует взаимодействие электронов с кислородом, растворенным в воде:

О2+2Н2О+4е®4ОН-- (4)

Катионы Fe 2+ и ионы ОН-- взаимодействуют с образованием закиси Fe:

Fe2+ + 2 OH--® Fe(OH)2. (5)

Если в воде достаточно свободного кислорода, закись Fe может окислиться до гидрата окиси Fe:

4Fe(OH)22+2Н2О®4Fe(OH)3¯, (6)

который выпадает в виде осадка.

Итак, в результате протекания электрического тока анод разрушается: частицы металла в виде ионов Fe 2+ переходят в воду или эмульсионный поток. Анод, разрушаясь, образует в трубе свищ

 

 

Билет 54 1. Особенности разработки нефтяных оторочек.

Основные сложности при разработке нефтегазовых залежей связаны с технологическими трудностями извлечения нефти, зависящими от режима их разработки. При этом в основном проявляют себя режимы растворенного газа и упруговодонапорный; первый имеет главенствующее значение и определяет конечный коэффициент нефтеотдачи, в большинстве случаев несущественный. Рациональным способом извлечения запасов нефтяной оторочки считается опережающая выработка ее с сохранением энергии газовой шапки. Однако, как показывает мировая практика, иногда полезен способ одновременного извлечения запасов нефти и газа из нефтегазовых залежей с сохранением неподвижности газонефтяного контакта.Во многих случаях при разработке нефтегазовых залежей (НГЗ) вскрываются газоводонефтяные зоны или нефтяные оторочки при разработке газоконденсатнонефтяных залежей (ГКНЗ) с подошвенной водой.

азработка таких залежей обусловливается следующими характерными особенностями

· полной гидродинамической связью нефтяной залежи с газовой шапкой и водоносным пластом и вероятной подвижностью газонефтяного и водонефтяного контактов в окрестности скважин в процессе разработки залежи

· практически неподвижностью контуров газоносности и нефтеносности в пласте; равномерным распределением пластовой энергии по площади нефтеносности;

· равенством начального пластового давления и давления насыщения

· относительной близостью расположения к забоям скважин водонефтяного и газонефтяного контактов при дренировании нефтяной оторочки

· неустойчивостью процесса вытеснения нефти газом, приводящей к быстрому прорыву газа к забоям добывающих скважин и их загазованности и в конечном счете к значительной потере пластовой энергии и снижению нефтеотдачи

· возможностью проявления ретроградной конденсации из-за снижения давления в газонасыщенной зоне пласта, предопределяющей пластовые потери конденсата

· трудностью регулирования перемещением ГНК и ВНК и др.

При разработке НГЗ и ГКНЗ с подошвенной водой темп отбора нефти обусловливается деформацией контактов и прорывом газа и воды к забоям скважин. При этом весьма важным параметром при установлении режима работы скважин и прогнозировании технологических показателей разработки является анизотропия пласта, обоснование которой необходимо для каждой конкретной залежи. М. Маскет также указывает, что анизотропность коллектора существенно влияет на эффективность размещения скважин. Низкая проницаемость по вертикали препятствует быстрому поднятию вершины конуса и способствует выполаживанию поверхности раз дела вода-нефть. Высокая проницаемость по вертикали (малая анизотропия пласта) способствует быстрому продвижению вершины конуса к забою скважины, что обусловливает концентрированную деформацию поверхности раздела вблизи скважины с низким коэффициентом охвата вытеснения нефти подошвенной водой.

Date: 2016-05-23; view: 726; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию