Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Функции живого вещества в биосфере





Живое вещество. Этот термин введен в литературу В. И. Вер­надским. Под ним он понимал совокупность всех живых организ­мов, выраженную через массу, энергию и химический состав.

Вещества неживой природы относятся к косным (например, ми­нералы). В природе, кроме этого, довольно широко представлены био­косные вещества, образование и сложение которых обусловливает­ся живыми и косными составляющими (например, почвы, воды).

Живое вещество - основа биосферы, хотя и составляет крайне незначительную ее часть. Если его выделить в чистом виде и рас­пределить равномерно по поверхности Земли, то это будет слой около 2 см или крайне незначительная доля от объема всей био­сферы, толща которой измеряется десятками километров. В чем же причина столь высокой химической активности и геологической роли живого вещества?

Прежде всего это связано с тем, что живые организмы, благо­даря биологическим катализаторам (ферментам), совершают, по выражению академика Л. С. Берга, с физико-химической точки зре­ния что-то невероятное. Например, они способны фиксировать в своем теле молекулярный азот атмосферы при обычных для при­родной среды значениях температуры и давления. В промышлен­ных условиях связывание атмосферного азота до аммиака требует температуры порядка 500°С и давления 300-500 атмосфер.

В живых организмах на порядок или несколько порядков увели­чиваются скорости химических реакций в процессе обмена веществ. В. И. Вернадский в связи с этим живое вещество назвал чрезвы­чайно активизированной материей.

Свойства живого вещества. К основным уникальным особен­ностям живого вещества, обусловливающим его крайне высокую средообразующую деятельность, можно отнести следующие:

1. Способность быстро занимать (осваивать) все свобод­ное пространство. В. И. Вернадский назвал это всюдностью жиз­ни. Данное свойство дало основание В. И. Вернадскому сделать вывод, что для определенных геологических периодов количество живого вещества было примерно постоянным (константой). Спо­собность быстрого освоения пространства связана как с интенсив­ным размножением (некоторые простейшие формы организмов могли бы освоить весь земной шар за несколько часов или дней, если бы не было факторов, сдерживающих их потенциальные воз­можности размножения), так и со способностью организмов ин­тенсивно увеличивать поверхность своего тела или образуемых ими сообществ. Например, площадь листьев растений, произрастаю­щих на 1 га, составляет 8-10 га и более. То же относится к корне­вым системам.

2. Движение не только пассивное (под действием силы тяже­сти, гравитационных сил и т. п.), но и активное. Например, против течения воды, силы тяжести, движения воздушных потоков и т. п.

3. Устойчивость при жизни и быстрое разложение после смерти (включение в круговороты), сохраняя при этом высокую физико-химическую активность.

4. Высокая приспособительная способность (адаптация) к различным условиям и в связи с этим освоение не только всех сред жизни (водной, наземно-воздушной, почвенной, организменной), но и крайне трудных по физико-химическим параметрам условий. Например, некоторые организмы выносят температуры, близ­кие к значениям абсолютного нуля - 273°С, микроорганизмы встре­чаются в термальных источниках с температурами до 140°С, в водах атомных реакторов, в бескислородной среде, в ледовых пан­цирях и т. п.

5. Феноменально высокая скорость протекания реакций. Она на несколько порядков (в сотни, тысячи раз) значительнее, чем в неживом веществе. Об этом свойстве можно судить по скорости переработки вещества организмами в процессе жизне­деятельности. Например, гусеницы некоторых насекомых потреб­ляют за день количество пищи, которое в 100-200 раз больше веса их тела. Особенно активны организмы-грунтоеды. Дождевые чер­ви (масса их тел примерно в 10 раз больше биомассы всего чело­вечества) за 150-200 лет пропускают через свои организмы весь однометровый слой почвы. Такие же явления имеют место в дон­ных отложениях океана. Слой донных отложений здесь может быть представлен продуктами жизнедеятельности кольчатых чер­вей (полихет) и достигать нескольких метров. Колоссальную роль по преобразованию вещества выполняют организмы, для кото­рых характерен фильтрационный тип питания. Они освобождают водные массы от взвесей, склеивая их в небольшие агрегаты и осаждая на дно.

Впечатляют примеры чисто механической деятельности неко­торых организмов, например роющих животных (сурков, сусликов и др.), которые в результате переработки больших масс грунта со­здают своеобразный ландшафт. По представлениям В. И. Вернад­ского, практически все осадочные породы, а это слой до 3 км, на 95-99% переработаны живыми организмами. Даже такие колос­сальные запасы воды, которые имеются в биосфере, разлагаются в процессе фотосинтеза за 5-6 млн. лет, углекислота же проходит через живые организмы в процессе фотосинтеза каждые 6-7 лет.

6. Высокая скорость обновления живого вещества. Под­считано, что в среднем для биосферы она составляет 8 лет, при этом для суши -14 лет, а для океана, где преобладают организмы с коротким периодом жизни (например, планктон), - 33 дня. В ре­зультате высокой скорости обновления за всю историю существо­вания жизни общая масса живого вещества, прошедшего через био­сферу, примерно в 12 раз превышает массу Земли. Только неболь­шая часть его (доли процента) законсервирована в виде органичес­ких остатков (по выражению В. И. Вернадского, «ушла в геоло­гию»), остальная же включилась в процессы круговорота.

Все перечисленные и другие свойства живого вещества обус­ловливаются концентрацией в нем больших запасов энер­гии. Согласно В. И. Вернадскому, по энергетической насыщеннос­ти с живым веществом может соперничать только лава, образую­щаяся при извержении вулканов.

Средообразующие функции живого вещества. Всю деятель­ность живых организмов в биосфере можно, с определенной долей условности, свести к нескольким основополагающим функциям, которые позволяют значительно дополнить представление об их пре­образующей биосферно-геологической роли.

В. И. Вернадский выделял девять функций живого вещества: газовую, кислородную, окислительную, кальциевую, восстановитель­ную, концентрационную и другие. В настоящее время название этих функций несколько изменено, некоторые из них объединены. Мы приводим их в соответствии с классификацией А. В. Лапо (1987).

1. Энергетическая. Связана с запасанием энергии в процессе фотосинтеза, передачей ее по цепям питания, рассеиванием. Эта функция - одна из важнейших и будет подробнее рассмотрена в разделе IV.4 - энергетика экосистем.

Энергетическая функция живого вещества нашла отражение в двух биогеохимических принципах, сформулированных В.И.Вер­надским. В соответствии с первым из них геохимическая биогенная энергия стремится в биосфере к максимальному проявлению. Второй принцип гласит, что в процессе эволю­ции выживают те организмы, которые своей жизнью увели­чивают геохимическую энергию.

2. Газовая - способность изменять и поддерживать определен­ный газовый состав среды обитания и атмосферы в целом. В час­тности, включение углерода в процессы фотосинтеза, а затем в цепи питания обусловливало аккумуляцию его в биогенном веществе (органические остатки, известняки и т. п.) В результате этого шло постепенное уменьшение содержания углерода и его соединений, прежде всего двуокиси (СО2) в атмосфере с десятков процентов до современных 0,03%. Это же относится к накоплению в ат­мосфере кислорода, синтезу озона и другим процессам.

С газовой функцией в настоящее время связывают два перелом­ных периода (точки) в развитии биосферы. Первая из них относит­ся ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). С этого времени вос­становительные процессы в биосфере стали дополняться окисли­тельными. Это произошло примерно 1,2 млрд. лет назад. Второй переломный период в содержании кислорода связывают со време­нем, когда концентрация его достигла примерно 10% от современ­ной (вторая точка Пастера). Это создало условия для синтеза озо­на и образования озонового экрана в верхних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого фун­кцию защиты организмов от губительных ультрафиолетовых лучей выполняла вода, под слоем которой возможна была жизнь).

3. Окислительно-восстановительная. Связана с интенсифи­кацией под влиянием живого вещества процессов как окисления, благодаря обогащению среды кислородом, так и восстановления прежде всего в тех случаях, когда идет разложение органических веществ при дефиците кислорода. Восстановительные процессы обычно сопровождаются образованием и накоплением сероводо­рода, а также метана. Это, в частности, делает практически без­жизненными глубинные слои болот, а также значительные придон­ные толщи воды (например, в Черном море). Данный процесс в связи с деятельностью человека прогрессирует.

4. Концентрационная - способность организмов концентриро­вать в своем теле рассеянные химические элементы, повышая их содержание по сравнению с окружающей организмы средой на не­сколько порядков (по марганцу, например, в теле отдельных орга­низмов - в миллионы раз). Результат концентрационной деятельно­сти - залежи горючих ископаемых, известняки, рудные месторож­дения и т. п. Эту функцию живого вещества всесторонне изучает наука биоминералогия. Организмы-концентраторы используются для решения конкретных прикладных вопросов, например для обога­щения руд интересующими человека химическими элементами или соединениями.

5. Деструктивная - разрушение организмами и продуктами их жизнедеятельности как самих остатков органического вещества, так и косных веществ. Основной механизм этой функции связан с круговоротом веществ. Наиболее существенную роль в этом от­ношении выполняют низшие формы жизни - грибы, бактерии (дес­трукторы, редуценты).

6. Транспортная - перенос вещества и энергии в результате активной формы движения организмов. Часто такой перенос осу­ществляется на колоссальные расстояния, например, при миграци­ях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, на­пример, в местах их скопления (птичьи базары и другие колониаль­ные поселения).

7. Средообразующая. Эта функция является в значительной мере интегративной (результат совместного действия других фун­кций). С ней в конечном счете связано преобразование физико-хи­мических параметров среды. Эту функцию можно рассматривать в широком и более узком планах.

В широком понимании результатом данной функции является вся природная среда. Она создана живыми организмами, они же и под­держивают в относительно стабильном состоянии ее параметры практически во всех геосферах.

В более узком плане средообразующая функция живого веще­ства проявляется, например, в образовании почв. В. И. Вернадс­кий, как отмечалось выше, почву называл биокосным телом, под­черкивая тем самым большую роль живых организмов в ее созда­нии и существовании. Роль живых организмов в образовании почв убедительно показал Ч. Дарвин в работе «Образование раститель­ного слоя земли деятельностью дождевых червей». Известный ученый В. В. Докучаев назвал почву «зеркалом ландшафта», под­черкивая тем самым, что она продукт основного ландшафтообразующего элемента - биоценозов и, прежде всего, растительного покрова.

Локальная средообразующая деятельность живых организмов и особенно их сообществ проявляется также в трансформации ими метеорологических параметров среды. Это прежде всего относит­ся к сообществам с большой массой органического вещества (био­массой). Например, в лесных сообществах микроклимат существен­но отличается от открытых (полевых) пространств. Здесь меньше суточные и годовые колебания температур, выше влажность воз­духа, ниже содержание углекислоты в атмосфере на уровне полога, насыщенного листьями (результат фотосинтеза), и повышенное ее количество в припочвенном слое (следствие интенсивно идущих процессов разложения органического вещества на почве и в верх­них горизонтах почвы).

8. Наряду с концентрационной функцией живого вещества выде­ляется противоположная ей по результатам - рассеивающая. Она проявляется через трофическую (питательную) и транспортную деятельность организмов. Например, рассеивание вещества при выделении организмами экскрементов, гибели организмов при раз­ного рода перемещениях в пространстве, смене покровов. Железо гемоглобина крови рассеивается, например, кровососущими насе­комыми и т. п.

Важна также информационная функция живого вещества, вы­ражающаяся в том, что живые организмы и их сообщества накап­ливают определенную информацию, закрепляют ее в наследствен­ных структурах и затем передают последующим поколениям. Это одно из проявлений адаптационных механизмов.

В обобщающем виде роль живого вещества сформулирована гео­химиком А. Н. Перельманом в виде «Закона биогенной мигра­ции атомов» (В. И. Вернадского): «Миграция химических элементов на земной поверхности и в биосфере в целом осу­ществляется или при непосредственном участии живого вещества, или же она протекает в среде, геохимические осо­бенности которой обусловлены живым веществом...» В со­ответствии с этим законом понимание процессов, протекающих в биосфере, невозможно без учета биотических и биогенных факто­ров. Воздействуя на живое население Земли, люди тем самым из­меняют условия миграции атомов, а следовательно, воздействуют на основополагающие геологические процессы.

 

  1. Биогеохимические процессы в экосистеме. Круговорот веществ.

1. Биогеохимические круговороты.

 

В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот.

Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Ещё большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но тем не менее не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах – наиболее древних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не должно меняться, а скорее о влиянии человека на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.

Надежды на преодоление экологических трудностей связывают, в частности, с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако полная и окончательная перестройка индустрии по принципу круговорота вещества в природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты.

 

2. Круговорот веществ в биосфере.

 

Процессы фотосинтеза органического вещества из неорганических компонентов продолжается миллионы лет, и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250 млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т органического вещества (в пересчёте на сухой вес).

Громадные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и испарения. Это приводит к тому, что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а вся остальная вода океана – приблизительно за год. Весь углекислый газ атмосферы обновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т азота, 210 млрд т фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). существование этих круговоротов придаёт экосистеме определённую устойчивость.

Различают два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки. Так, тело человека состоит из кислорода (62,8%), углерода (19,37%), водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё примерно из 30 элементов.


3. Круговорот углерода.

 

Самый интенсивный биогеохимический цикл – круговорот углерода. В природе углерод существует в двух основных формах – в карбонатах (известняках) и углекислом газе. Содержание последнего в 50 раз больше, чем в атмосфере. Углерод участвует в образовании углеводов, жиров, белков и нуклеиновых кислот.

Основная масса аккумулирована в карбонатах на дне океана (1016 т), в кристаллических породах (1016 т), каменном угле и нефти (1016 т) и участвует в большом цикле круговорота.

Основное звено большого круговорота углерода – взаимосвязь процессов фотосинтеза и аэробного дыхания (рис. 1).

Другое звено большого цикла круговорота углерода представляет собой анаэробное дыхание (без доступа кислорода); различные виды анаэробных бактерий преобразуют органические соединения в метан и другие вещества (например, в болотных экосистемах, на свалках отходов).

В малом цикле круговорота участвует углерод, содержащийся в растительных тканях (около 1011 т) и тканях животных (около 109 т).

4. Круговорот кислорода.

 

В количественном отношении главной составляющей живой материи является кислород, круговорот которого осложнён его способностью вступать в различные химические реакции, главным образом реакции окисления. В результате возникает множество локальных циклов, происходящих между атмосферой, гидросферой и литосферой.

Кислород, содержащийся в атмосфере и в поверхностных минералах (осадочные кальциты, железные руды), имеет биогенное происхождение и должно рассматриваться как продукт фотосинтеза. Этот процесс противоположен процессу потребления кислорода при дыхании, который сопровождается разрушением органических молекул, взаимодействием кислорода с водородом (отщеплённым от субстрата) и образованием воды. В некотором отношении круговорот кислорода напоминает обратный круговорот углекислого газа. В основном он происходит между атмосферой и живыми организмами.

Потребление атмосферного кислорода и его возмещение растениями в процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают, что для полного обновления всего атмосферного кислорода требуется около двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды гидросферы были подвергнуты фотолизу и вновь синтезированы живыми организмами, необходимо два миллиона лет. Большая часть кислорода, вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в виде газа или сульфатов, растворённых в океанических и континентальных водах, в несколько раз меньше (0,4*1016 т).

Отметим, что, начиная с определённой концентрации, кислород очень токсичен для клеток и тканей (даже у аэробных организмов). А живой анаэробный организм не может выдержать (это было доказано ещё в прошлом веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%.

 

5. Круговорот азота.

 

Газообразный азот возникает в результате реакции окисления аммиака, образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2 ® 2N2 + 6H2O.

Круговорот азота – один из самых сложных, но одновременно самых идеальных круговоротов. Несмотря на то что азот составляет около 80% атмосферного воздуха, в большинстве случаев он не может быть непосредственно использован растениями, т.к. они не усваивают газообразный азот. Вмешательство живых существ в круговорот азота подчинено строгой иерархии: только определённые категории организмов могут оказывать влияние на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в атмосферу в результате работы некоторых бактерий, тогда как другие бактерии – фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его, преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере в результате электрических разрядов во время гроз.

Самые активные потребители азота – бактерии на корневой системе растений семейства бобовых. Каждому виду этих растений присущи свои особые бактерии, которые превращают азот в нитраты. В процессе биологического цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее образуются отходы в виде погибших организмов, являющихся объектами жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так возникает новый цикл круговорота. Существуют организмы, способные превращать аммиак в нитриты, нитраты и в газообразный азот. Биологическая активность организмов дополняется промышленными способами получения азотосодержащих органических и неорганических веществ, многие из которых применяются в качестве удобрений для повышения продуктивности и роста растений.

Антропогенное влияние на круговорот азота определяется следующими процессами:

1. сжигание топлива приводит к образованию оксида азота, а затем реакциям:

2. 2NO + O2 ® 2NO2,

3. 4NO2 + 2H2O.+ O2 ® 4HNO3,

4. способствуя выпадению кислотных дождей;

5. в результате воздействия некоторых бактерий на удобрения и отходы животноводства образуется закись азота – один из компонентов, создающих парниковый эффект;

6. добыча полезных ископаемых, содержащих нитрат-ионы и ионы аммония, для производства минеральных удобрений;

7. при сборе урожая из почвы выносятся нитрат-ионы и ионы аммония;

8. стоки с полей, ферм и из канализаций увеличивают количество нитрат-ионов и ионов аммония в водных экосистемах, что ускоряет рост водорослей и других растений; при разложении последних расходуется кислород, что в конечном счёте приводит к гибели рыб.

 

6. Круговорот фосфора.

 

Фосфор – один из основных компонентов (главным образом в виде и ) живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК), клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ), жиров, костей и зубов. Круговорот фосфора, как и других биогенных элементов, совершается по большому и малому циклам.

Запасы фосфора, доступные живым существам, полностью сосредоточены в литосфере. Основные источники неорганического фосфора – изверженные или осадочные породы. В земной коре содержание фосфора не превышает 1%, что лимитирует продуктивность экосистем. Из пород земной коры неорганический фосфор вовлекается в циркуляцию континентальными водами. Он поглощается растениями, которые при его участии синтезируют различные органические соединения и таким образом включаются в трофические цепи. Затем органические фосфаты вместе с трупами, отходами и выделениями живых существ возвращаются в землю, где снова подвергаются воздействию микроорганизмов и превращаются в минеральные формы, употребляемые зелёными растениями.

В экосистеме океана фосфор приносится текучими водами, что способствует развитию фитопланктона и живых организмов.

В наземных системах круговорот фосфора проходит в оптимальных естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это связано с постоянным оседанием (седиментацией) органических веществ. Осевший на небольшой глубине органический фосфор возвращается в круговорот. Фосфаты, отложенные на больших морских глубинах не участвуют в малом круговороте. Однако тектонические движения способствуют подъёму осадочных пород к поверхности.

Таким образом фосфор медленно перемещается из фосфатных месторождений на суше и мелководных океанических осадков к живым организмам и обратно (рис. 4).

Рассматривая круговорот фосфора в масштабе биосферы за сравнительно короткий период, можно сделать вывод, что он полностью не замкнут. Запасы фосфора на земле малы. Поэтому считают, что фосфор – основной фактор, лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор – главный регулятор всех других биогеохимических циклов, это – наиболее слабое звено в жизненной цепи, которая обеспечивает существование человека.

Антропогенное влияние на круговорот фосфора состоит в следующем:

1. добыча больших количеств фосфатных руд для минеральных удобрений и моющих средств приводит к уменьшению количества фосфора в биотическом круговороте;

2. стоки с поле, ферм и коммунальные отходы приводят к увеличению фосфат-ионов в водоёмах, к резкому росту водных растений и нарушению равновесия в водных экосистемах.

7. Круговорот серы.

Из природных источников сера попадает в атмосферу в виде сероводорода, диоксида серы и частиц сульфатных солей.

Около одной трети соединений серы и 99% диоксида серы – антропогенного происхождения. В атмосфере протекают реакции, приводящие к кислотным осадкам:

2SO2 + O2 ® 2SO3,

SO3 + H2O ® H2SO4.

 

8. Круговорот воды.

 

Вода, как и воздух, - основной компонент, необходимый для жизни. В количественном отношении это самая распространённая неорганическая составляющая живой материи. Семена растений, в которых содержание воды не превышает 10%, относятся к формам замедленной жизни. Такое же явление (ангидробиоз) наблюдается у некоторых видов животных, которые при неблагоприятных внешних условиях могут терять большую часть воды в своих тканях.

Вода в трёх агрегатных состояниях присутствует во всех составных частях биосферы: атмосфере, гидросфере и литосфере. Если воду, находящуюся в различных гидрогеологических формах, равномерно распределить по соответствующим областям земного шара, то образуются слои следующей толщины: для Мирового океана 2700 м, для ледников 100 м, для подземных вод 15 м, для поверхностных пресных вод 0,4 м, для атмосферной влаги 0,03 м.

Основную роль в циркуляции и биогеохимическом круговороте воды играет атмосферная влага, несмотря на относительно малую толщину её слоя. Атмосферная влага распределена по Земле неравномерно, что обуславливает большие различия в количестве осадков в разных районах биосферы. Среднее содержание водяного пара в атмосфере изменяется в зависимости от географической широты. Например, на Северном полюсе оно равно 2,5 мм (в столбе воздуха с поперечным сечением 1 см2), на экваторе - 45 мм.

О механизме гидрогеологического цикла было сказано выше – в разделе касающемся описания особенностей гидросферы. Вода, выпавшая на сушу, затем расходуется на просачивание (или инфильтрацию), испарение и сток. Просачивание особенно важно для наземных экосистем, так как способствует снабжению почвы водой. В процессе инфильтрации вода поступает в водоносные горизонты и подземные реки. Испарение с поверхности почвы также играет важную роль в водном режиме местности, но более значительное количество воды выделяют сами растения своей листвой. Причём количество воды, выделяемое растениями, тем больше, чем лучше они ею снабжаются. Растения, производящие одну тонну растительной массы, поглощают как минимум 100 т воды.

Главную роль в круговороте воды на континентах играет суммарное испарение (деревья и почва).

Последняя составляющая круговорота воды на суше – сток. Поверхностный сток и ресурсы подземных водоносных слоёв обеспечивают питание водных потоков. Вместе с тем при уменьшении плотности растительного покрова сток становится основной причиной эрозии почвы.

Как уже отмечалось, вода участвует и в биологическом цикле, являясь источником кислорода и водорода. Однако фотолиз её при фотосинтезе не играет существенной роли в процессе круговорота.

 

9. Антропогенные воздействия на окружающую среду.

 

Проблемы народонаселения и ресурсов биосферы тесно связаны с реакциями окружающей природной среды на антропогенные воздействия. Естественное экологически сбалансированное состояние окружающей среды обычно называют нормальным. Это состояние, при котором отдельные группы организмов биосферы взаимодействуют друг с другом и с абиотической средой без нарушения равновесия круговоротов веществ и потоков энергии в пределах определённого геологического периода, обусловлено нормальным протеканием природных процессов во всех геосферах.

Природные процессы могут иметь катастрофический характер, например извержения вулканов, землетрясения, наводнения, что, однако, также составляет «норму» природы. Эти и другие природные процессы постепенно, с геологической скоростью, эволюционируют и в то же время в течение тысячелетий (на протяжении одного геологического периода) остаются в квазистатическом сбалансированном состоянии. При этом квазистатически протекают малый (биологический) и большой (геологический) круговороты веществ и устанавливаются квазистатические энергетические балансы между различными геосферами и космосом, что объединяет природу в единое целое. Круговороты веществ и энергии в биосфере характеризуются определёнными количественными параметрами, которые квазистатичны и специфичны для данного геологического периода и для каждого элемента земной поверхности в соответствии с их географией.

Обычно в качестве основных параметров, характеризующих состояние окружающей природной среды, выделяют следующие:

 

1. Энергетический:

 

Е = Е0 + DЕ,

 

где Е0 – запас энергии в системе в момент времени t0;

DЕ – энергетический баланс системы за время Dt, т.е. в период от t = t0 до t = t0 + Dt.

2. Водный:

W = W0 + DW,

 

где W0 – запас воды в системе в момент времени t0;

DW – водный баланс системы за время Dt, т.е. в период от t = t0 до t = t0 + Dt.

3. Биологический:

 

В = В0 + DВв - DВm,

 

где B0 – начальная биомасса;

в – биологическая продуктивность;

m – минерализация органики за время Dt.

 

4. Биогеохимический:

 

G = G0 + DGв - DGg,

 

где G0 – запас химических элементов в системе;

DGв и DGg – изменение запаса химических элементов вследствие биологического и геологического круговоротов веществ.

Эти параметры состояния окружающей среды могут быть количественно определены экспериментальным путём для каждой точки, района, крупного региона, природной зоны или ландшафтно-географического пояса, наконец, для земного шара в целом; они количественно характеризуют состояние и пространственную неоднородность среды.

Геохимический параметр состояния окружающей среды также существенно изменился, особенно в отношении биологического и геологического круговоротов. Под влиянием человеческой деятельности происходят большие изменения в распределении химических элементов в биосфере, природная и антропогенная трансформация веществ, а также переход химических элементов из одних соединений в другие. Природный биологический круговорот веществ нарушен человеком на площади, достигающей почти половины всей поверхности суши: антропогенные пустыни, индустриальные и городские земли, пашни, сады, вторичные низкопродуктивные леса, истощённые пастбища и т.д.

Нарушению геологического круговорота веществ способствовали такие факторы:

1. Эрозия почвенного покрова и возрастания твёрдого стока в океан;

2. Перемещение огромных масс земной коры;

3. Извлечение из недр значительных количеств руд, горючих и других ископаемых;

4. Перераспределение солей в почвах, грунтовых и речных водах под влиянием орошаемого земледелия;

5. Применение минеральных удобрений и ядохимикатов;

6. Загрязнение среды сельскохозяйственными, промышленными и коммунальными отходами;

7. Поступление в природную среду энергетических загрязнений.

Таким образом, исследование изменений параметров состояния окружающей природной среды (хотя и на качественном уровне) позволяет сделать вывод об отсутствии в настоящее время глобального экологического кризиса. В то же время есть все основания считать теперешнее состояние биосферы нарушенным и аномальным. Такое состояние может перейти в кризисное, если человечество не проведёт специальные мероприятия по оздоровлению окружающей его среды.

  1. Глобальные проблемы и региональные кризисные ситуации. Причины возникновения.

Взаимодействие общества и природы – узловая проблема политического и социально-экономического развития общества. Расширяя и усиливая антропогенное и техногенное давление на природу, общество сталкивается с многократно воспроизведенным «эффектом бумеранга»: разрушение природы оборачивается экономическим ущербом и социальным уроном. Процессы экологической деградации приобретают характер глубокого экологического кризиса. Вопрос о сохранении природы превращается в вопрос выживания человечества. И нет в мире политической системы, которая сама по себе гарантировала бы экологическое благосостояние страны.

Многие экологические проблемы взаимоотношений в системе «общество–природа» сейчас перешагнули рамки национальных хозяйств и приобрели глобальное измерение. В скором времени на первом плане во всем мире окажутся не идеологические, а экологические проблемы, доминировать будут не отношения между нациями, а отношения между нациями и природой.

Единственный путь выживания – максимализация стратегии бережливости в отношении с окружающим миром. В этом процессе должны участвовать все члены мирового сообщества.

1. Глобальные проблемы человечества. Факторами, способствующими появлению и обострению глобальных проблем, явились:

· резкое увеличение расходования природных ресурсов;

· отрицательное антропогенное воздействие на природную среду, ухудшение экологических условий жизни людей;

· усиление неравномерности в уровнях социально-экономического развития, между промышленно развитыми и развивающимися странами;

· создание оружия массового уничтожения.

Отметим признаки, присущие глобальным проблемам:

– глобальные проблемы проявления;

– острота проявления;

– комплексный характер;

– общечеловеческая сущность;

– особенность предопределять ход дальнейшей истории человечества;

– возможность их решения усилиями всего мирового сообщества.

Уже сейчас существует угроза необратимых изменений экологических свойств геосреды, угроза нарушения формирующейся целостности мирового сообщества и угроза самоуничтожения цивилизации.

Сейчас человек стоит перед решением двух важнейших проблем: предотвращения ядерной войны и экологической катастрофы. Сопоставление не случайно: антропогенное давление на природную среду грозит тем же, что и применение атомного оружия, – уничтожением жизни на Земле.

Особенность нашего времени является интенсивное и глобальное воздействие человека на окружающую среду, что сопровождается интенсивными и глобальными негативными последствиями. Противоречия между человеком и природой способны обостряться из-за того, что не существует предела росту материальных потребностей человека, в то время как способность природной среды удовлетворять их – ограничена. Противоречия в системе «человек – общество – природа» приобрели планетарный характер.

Выделяют два аспекта экологической проблемы:

– экологические кризисы, возникающие как следствие природных процессов;

– кризисы, вызываемые антропогенным воздействием и нерациональным природопользованием.

Основной проблемой является невозможность планеты справиться с отходами человеческой деятельности, с функцией самоочищения и ремонта. Разрушается биосфера. Поэтому велик риск самоуничтожения человечества в результате собственной жизнедеятельности.

Природа испытывает влияние по следующим направлениям:

– использование компонентов окружающей среды в качестве ресурсной базы производства;

– воздействие производственной деятельности людей на окружающую среду;

– демографическое давление на природу (сельскохозяйственное использование земель, рост населения, рост крупных городов).

Здесь переплетаются воедино многие глобальные проблемы человечества – ресурсная, продовольственная, демографическая – все они имеют выход на экологическую проблематику.

Современная ситуация на планете характеризуется резким ухудшением качества окружающей среды – загрязнение воздуха, рек, озер, морей, объединением и даже полным исчезновением многих видов животного и растительного мира, деградацией почв, опустыниванием и др. Этот конфликт создает угрозу появления необратимых изменений в природных системах, подрыва естественных условий и ресурсов существования поколений жителей планеты. Рост производственных сил общества, рост населения, урбанизация, научно-технический прогресс являются катализаторами этих процессов.

Истощение озонового слоя представляет гораздо более опасную реальность для всего живого на Земле, чем падение какого-нибудь сверхкрупного метеорита. Озон не допускает опасное космическое излучение до поверхности Земли. Если бы не озон, эти лучи разрушили бы все живое. Исследования причин истощения озонового слоя планеты не дали пока окончательных ответов на все вопросы. Наблюдения с искусственных спутников показали сокращение уровня озона. С ростом интенсивности ультрафиолетовой радиации ученые связывают увеличение заболеваемости глаз и онкологических болезней, возникновение мутаций. Под ударом оказался человек, мировой океан, климат, животный и растительный мир.

Острота социально-экологической ситуации в развивающихся странах привела к появлению феномена «третьего мира». Он характеризуется:

– природным своеобразием тропического пояса;

– традиционной ориентацией развития, которая объективно ведет к усилению давления на биосферу (быстрый рост населения, традиционное сельское хозяйство и др.);

– взаимосвязью и взаимозависимостью различных регионов мира (перенос загрязнений);

– слабой развитостью этих стран, зависимостью от бывших метрополий.

Если для промышленно развитых стран экологические проблемы имеют «индустриальный характер», то для развивающихся – с переиспользованием естественных ресурсов (лесов, почв и др. природных богатств). Иными словами, если развитые страны страдают от своего «богатства», то развивающиеся – от «бедности».

Небывалыми темпами уничтожаются влажные тропические леса, а именно эти леса часто называют «легкими Планеты». Среди основных причин сведения лесных массивов в развивающихся странах можно выделить следующие: традиционно подсечная система земледелия, использование древесины в качестве топлива, вырубка на экспорт. Влажные тропические леса вырубаются в десять раз быстрее, чем происходит их естественное восстановление. Катастрофическое сокращение лесов в юго-восточной Азии может привести к их полному уничтожению через 15–20 лет.

В связи с очень важным значением влажно-тропических лесов их сведение является важным экономическим бедствием для всей планеты.

Сейчас процесс опустынивания, зарождаясь локально, принял глобальные масштабы.

Со времени возникновения технической цивилизации на Земле сведено около 1/3 площади лесов, пустыни резко ускорили свое наступление на зеленые зоны. Так, пустыня Сахара продвигается к югу со скоростью около 50 км в год. По климатическим данным, пустыни и полупустыни занимают более трети поверхности суши и на этой территории проживают свыше 15% населения мира. Только в результате хозяйственной деятельности людей за последние 25 лет появилось свыше 9 миллионов квадратных километров пустынь.

К основным причинам опустынивания можно отнести уничтожение скудной растительности из-за чрезмерного выпаса скота, распашку пастбищных массивов, вырубку деревьев и кустарников на топливо, промышленное и дорожное строительство и др. Добавляется к этим процессам ветровая эрозия, иссушение верхних горизонтов почвы, засухи.

2. Демографическая проблема. Демографическое развитие – не только рост населения, оно включает в себя вопросы природопользования, роста численности населения относительно территорий ее природно-ресурсной основы.

Население нашей планеты составляет более 6,2 млрд человек и растет очень быстро. За ближайшие 10 лет население Земли увеличится еще на один млрд жителей. Более половины населения земного шара концентрируется в Азии – 60%. Свыше 90% общего прироста населения приходится на менее развитые регионы и страны и на перспективу эти страны сохранят высокие темпы прироста.

В наше время последствия прироста населения приобрели такую актуальность, что получили статус глобальной проблемы. Именно народонаселение рассматривается многими как один из факторов, угрожающих самому выживанию цивилизации, т.к. с учетом роста потребления ресурсов природы, технической и энергетической оснащенности давление населения на территорию будет непрерывно возрастать.

При этом надо иметь в виду, что социально-демографическая ситуация в развитом и развивающимся мире носит диаметрально противоположный характер.

Всего лишь 5% прироста мирового населения приходится на экономически развитые страны, большинство из которых находится в северном полушарии. Этот прирост происходит благодаря снижению уровня смертности и увеличению ожидаемой продолжительности жизни.

Не менее 95% прироста мирового населения в ближайшие годы придется на развивающиеся страны Азии, Африки, Латинской Америки. Динамичный рост населения этих стран – одна из важнейших социально-экономических проблем общемирового значения. Он получил громкое название «демографический взрыв» и удачно подчеркивает суть процесса воспроизводства населения в этих странах – выход его из-под контроля общества.

«Демографическое давление» осложняет не только продовольственную или экологическую ситуацию, но и оказывает негативную воздействие на процесс развития. Например, быстрый рост народонаселения не позволяет стабилизировать проблему безработицы, затрудняет решение проблем образования, здравоохранения и др. Иными словами, любая социально-экономическая проблема включает в себя и демографическую.

Современный мир становится все более урбанизированным. В недалеком будущем в городах будет проживать более 50% человечества.

А так как сейчас наблюдается тенденция к росту населения на всем земном шаре и урбанизация, то можно говорить об экологической проблеме городов, главным образом наиболее крупных из них, связанной с чрезмерной концентрацией на сравнительно небольших территориях населения, транспорта и промышленных предприятий, с образованием антропогенных ландшафтов, очень далеких от состояния экологического равновесия.

Урбанизация органично связана с большинством глобальных проблем. Города в силу особенно высокой территориальной концентрации в них населения и экономики сосредоточили и основную часть военно-экономического потенциала.

Города являются крупнейшими центрами потребления всех природных ресурсов, что связано с глобальной проблемой ресурсопотребления.

Существенной особенностью крупных городов с населением более 500 тыс. человек является то, что с увеличением территории города и численности его жителей в них неуклонно возрастет дифференциация концентраций загрязнения в различных районах. Наряду с невысокими уровнями концентрации загрязнения в периферийных районах, она резко увеличивается в зонах крупных промышленных предприятий и, в особенности центральных районах.

Над крупными городами атмосфера содержит в 10 раз больше аэрозолей и в 25 раз больше газов. При этом 60–70% газового загрязнения дает автомобильный транспорт. При малой подвижности воздуха тепловые аномалии над городом охватывают слои атмосферы в 250–400 м, а контрасты температуры могут достигать 5–6оС. С ними связаны температурные инверсии, приходящие к повышенному загрязнению, туманам и смогу.

Города потребляют в 10 и более раз больше воды в расчете на 1 человека, чем сельские районы, а загрязнение водоемов достигает катастрофических размеров. Объемы сточных вод достигают 1–2 м в сутки на одного человека. Поэтому практически все крупные города испытывают дефицит водных ресурсов и многие из них получают воду из удаленных источников.

Растительный покров городов обычно практически полностью представлен «культурными насаждениями» – парками, скверами, газонами, цветниками, аллеями. Развитие зеленых насаждений городов протекает в искусственных условиях, постоянно поддерживается человеком. Многолетние растения в городах развиваются в условиях сильного угнетения.

К тому же непрерывное разрастание городов приводит к поглощению земельных угодий, особенно в развивающихся странах.

3. Энерго-сырьевая проблема. Быстрый рост промышленности, сопровождающийся глобальным загрязнением природной среды, небывало остро поставил проблему сырьевых ресурсов. Сейчас человек в своей хозяйственной деятельности освоил почти все доступные и известные ему виды ресурсов как возобновляемых, так и невозобновляемых.

Изменения биосферы в результате человеческой деятельности стремительны. За ХХ век из недр извлечено полезных ископаемых больше, чем за всю историю цивилизации.

До начала ХХ века основным энергоресурсом была древесина, затем уголь. Ему на смену пришли добыча и потребление иных видов топлива – нефти и газа. Эра нефти дала толчок интенсивному развитию экономики, что потребовало, в свою очередь, увеличения производства и потребления ископаемого топлива. Каждые 13 лет потребности в энергии удваивались. Общемировые запасы условного топлива слагаются, в первую очередь, из запасов угля (60%), нефти и газа (27%). В совокупном мировом производстве иная картина – на уголь приходится более 30%, а на нефть и газ – более 67%. Если следовать прогнозам оптимистов, то мировых запасов нефти должно хватить на 2–3 столетия. Пессимисты же считают, что имеющиеся запасы нефти могут обеспечить потребности цивилизации лишь несколько десятков лет.

В настоящее время рост энергоемкости и материалоемкости современного производства значительно опережает рост численности населения. Потребление энергии растет в 3 раза, добыча минеральных ресурсов – в 2 раза быстрее, чем население. Горнодобывающая промышленность выдает в год более 40 т продукции в расчете на одного жителя Земли. При добыче угля ежегодно на поверхность поднимают около 1 млрд м2 пустой породы. Строят из нее бесполезные пирамиды – терриконы. При этом впустую растрачиваются тысячи гектаров плодородных земель. Загрязняется атмосфера, терриконы горят, ветер поднимает с их бесплодных склонов тучи пыли.

По мере технического прогресса все больший удельный вес приобретают первичные источники электроэнергии, получаемые с гидро- и геотермальных электростанций. В последние годы появились сомнения в целесообразности дальнейшего развития атомной энергетики.

Использование энергетических ресурсов – один из показателей уровня развития цивилизации. Потребление энергии развитыми государствами значительно превосходит соответствующие показатели стран развивающегося мира. Только 10 ведущих промышленных стран потребляют 70% общего количества вырабатываемой в мире энергии. В расчете на единицу конечной продукции Россия сейчас тратит в три раза больше энергии, чем Япония и ФРГ, и в два раза больше, чем США. Очевидно, что для такого природоемкого роста в России просто не хватит топливных ресурсов. Таким образом, важнейшая причина ухудшения экологической ситуации в России – неэффективная, природоемкая структура экономики.

Основными направлениями экономики энергоресурсов являются: совершенствование технологических процессов, совершенствование оборудования, снижение прямых потерь топливно-энергетических процессов, совершенствование оборудования, снижение прямых потерь топливно-энергетических ресурсов, структурные изменения в технологии производства, структурные изменения в производимой продукции, улучшение качества топлива и энергии, организационно-технические мероприятия. Проведение этих мероприятий вызывается не только необходимостью экономии энергетических ресурсов, но и важностью учета вопросов охраны окружающей среды при решении энергетических проблем. Большое значение имеет замена ископаемого топлива другими источниками (солнечной энергией, энергией волн, прилива, земли, ветров). Эти источники энергетических ресурсов являются экологически чистыми. Заменяя ими ископаемое топливо, мы снижаем вредное воздействие на природу и экономим органические энергоресурсы.

Важнейшим направлением экономических реформ в России, перехода на устойчивый тип развития является эколого-ориентированная структурная перестройка, позволяющая осуществить эффективное ресурсосбережение.

Благодаря энергетическому кризису произошел переход мировой экономики с экстенсивного пути развития на интенсивный, сократилось энерго- и сырьеёмкость мирового хозяйства, а обеспеченность его топливными и минеральными ресурсами (благодаря разработке новых месторождений) даже стала возрастать.

Ресурсообеспеченность – это соотношение между величиной запасов природных ресурсов и размером их использования. Уровень ресурсообеспечения определяется потенциалом собственной ресурсной базы страны, а также иными фактами, например, политическими и военно-стратегическими соображениями, международным разделением труда и др.

4. Земельные ресурсы, почвенный покров – это основа всей живой природы. Лишь 30% земельного фонда мира – сельскохозяйственные угодья, используемые человечеством для производства продуктов питания, остальная территория – горы, пустыни, ледники, болота, леса и т.д.

На протяжении всей истории цивилизации рост населения сопровождался расширением площади обрабатываемых земель. За истекшие 100 лет было расчищено больше земельных площадей для оседлого земледелия, чем за все предыдущие века.

Сейчас в мире практически не осталось земли для сельскохозяйственного освоения, лишь леса и экстремальные территории. К тому же во многих странах мира земельные ресурсы быстро уменьшаются (рост городов, промышленности и т.д.).

Ежегодно только вследствие эрозии из сельскохозяйственного оборота выпадает 7 млн га земель, а из-за заболачивания – засоления, выщелачивания – еще 1,5 млн га. И хотя эрозия – это естественный геологический процесс, в последние годы он явно усиливается, часто по причине неосмотрительной хозяйственной деятельности человека.

Сокращение земельных ресурсов в развивающихся странах, вызванное природными, социально-экономическими факторами, лежит в основе политических и этнических конфликтов. Деградация земель представляет собой серьезную проблему. Борьба с сокращением земельных ресурсов – важнейшая задача человечества.

Из всех видов ресурсов на первом месте по росту потребностей на него и по увеличению дефицита стоит пресная вода. 71% всей поверхности планеты занято водой, однако пресная вода составляет лишь 2% общего количества, и почти 80% пресной воды находятся в ледовом покрове Земли. Около 60% общей площади суши приходится на зоны, в которых нет достаточного количества пресной воды. Четвертая часть человечества ощущает ее недостаток, а еще свыше 500 млн жителей страдают от недостатка и плохого качества.

Промышленное значение воды очень велико, так как практически все производственные процессы требуют большого ее количества. Основная масса воды в промышленности используется для получения энергии и охлаждения.

В целом на хозяйственно-бытовые нужды изымается 10% речного стока планеты. Из них 5,6% расходуются безвозвратно. Если безвозвратный забор воды будет и дальше увеличиваться в том же темпе, что и теперь (4–5% ежегодно), то человечество может исчерпать все запасы пресных вод в геосфере. Положение осложняется тем, что большое количество природных вод загрязняется промышленно-бытовыми отходами. Все это, в конечном счете, попадает в океан, который и без того подвергается сильному загрязнению.

5. Вода является обязательным условием существования всех живых организмов на Земле.

Ресурсный потенциал океана может восполнить истощающиеся запасы.

Так какими же ресурсами обладает Мировой океан?

· Биологические ресурсы (рыба, зоо- и фитопланктон);

· Огромные ресурсы минерального сырья;

· Энергетический потенциал (один приливной цикл Мирового океана способен обеспечить человечество энергией – однако пока это «потенциал будущего»);

· Для развития мирового производства и обмена велико транспортное значение Мирового океана;

· Океан является вместилищем большинства отходов хозяйственной деятельности человечества (химическим и физическим воздействием своих вод и биологическим влиянием живых организмов океан рассеивает и очищает основную часть поступающих в него отходов, сохраняя относительное равновесие экосистем земли).

Океан – основной резервуар ценнейшего и все более дефицитного ресурса – воды (получение которой путем опреснения увеличивается каждый год). Ученые считают, что биологических ресурсов океана хватит, чтобы прокормить 30 млрд человек.

Из биологических ресурсов океана в настоящее время используется прежде всего рыба. Однако с 70-х годов прирост улова падает. В связи с этим человечество всерьез задумается о том, что биологические ресурсы океана в результате их чрезмерной эксплуатации находятся под угрозой.

К основным причинам оскудения биологических ресурсов можно отнести: нерациональное ведение мирового рыбного хозяйства, загрязнения вод океана.

Кроме биологических ресурсов, Мировой океан обладает огромными минеральными ресурсами. В морской воде представлены почти все элементы таблицы Менделеева. Недра океана, его дно богаты железом, марганцем, никелем, кобальтом. В настоящее время развивается шельфовая добыча нефти и газа, причем доля морской добычи приближается к 1/3 объема мировой добычи этих энергоносителей.

Однако наряду с эксплуатацией богатых природных ресурсов Мирового океана растет и загрязнение, особенно с перевозкой нефти. 90% отходов, ежегодно сбрасываемых в моря, остаются в прибрежных районах, где они наносят ущерб рыболовству, отдыху и т.д. Катастрофических размеров достигло загрязнение океана нефтепродуктами, ядохимикатами, синтетическими моющими средствами, нерастворимыми пластиками. Сейчас в океан попадает около 30 млн т нефтепродуктов в год. Нефтяной пленкой покрыто около 1/5 площади океана.

Ограниченность, неравномерное распределение ресурсов пресных вод и растущее загрязнение вод являются одной из составляющих глобальной ресурсной проблемой человечества.

В перспективе тревожно обстоит дело и с другим природным ресурсом, считавшимся раньше неисчерпаемым, – кислородом атмосферы. При сжигании продуктов фотосинтеза прошлых эпох – горючих ископаемых, происходит связывание свободного кислорода в соединения. Задолго до исчерпания запасов горючих ископаемых люди должны прекратить их сжигание, чтобы не задохнуться самим и не уничтожить все живое.

Демографический взрыв и научно-техническая революция привели к колоссальному увеличению потребления природных ресурсов. При таких темпах потребления стало очевидным исчерпание многих природных ресурсов в ближайшее время. Одновременно отходы гигантских производств стали всё больше загрязнять окружающую природную среду, разрушая здоровье населения.

Опасность экологического – ресурсного кризиса с научно-техни­ческой революцией не случайна. Научно-техническая революция создает условия снятия технических ограничений развития производства исключительно острую форму приняло новое противоречие – между внутренне безграничными возможностями развития производства и естественно ограниченными возможностями природной среды.

6. Продовольственная проблема. Продовольственная проблема имеет глобальный характер и в силу своей тесной взаимосвязанности со сложной задачей преодоления социально-экономической отсталости бывших колониальных и зависимых государств.

Решение продовольственной проблемы связано не только с увеличением производства продуктов питания, но и с разработкой стратегий рационального использования продовольственных ресурсов, в основе которых должно лежать понимание качественных и количественных аспектов потребности человека в питании.

В целом, в мире ресурсы продовольствия достаточны для обеспечения удовлетворительного питания человечества. Мировая экономика располагает сельскохозяйственными ресурсами и технологиями для того, чтобы прокормить в два раза больше людей, чем проживает на земле. Однако производство продовольствия не обеспечивается там, где в нем нуждаются. Голодание и недоедание 20% населения планеты является основным социальным содержанием продовольственного кризиса.

На продовольственную ситуацию в мире оказывают влияние: физико-географические условия и размещения населения, развитие мирового транспорта и мировая торговля.

Продовольственная ситуация в развивающихся странах тесно переплетается с другими проблемами, многие из которых также приобретают глобальный характер. К ним можно отнести: расходы на военные нужды, растущую внешнюю финансовую задолженность, энергетический фактор.

7. Проблема социально-экономической отсталости развивающихся стран. «Третий мир» – весьма условная общность стран Азии, Африки, Латинской Америки и Океании, составлявших в прошлом колониальную и полуколониальную периферию развитых капиталистических стран.

Для этой группы стран зарождение и обострение глобальных проблем имеет свою специфику, вытекающую из особенностей развития их культуры и экономики.

В развивающихся странах сосредоточена большая часть населения планеты, на их территории сконцентрированы значительные запасы мировых природных ресурсов, там производится немногим более 18% всемирного национального продукта, значительная часть их населения не имеет уровня доходов, соответствующего стандартам развитого мира.

Ежегодно развивающиеся страны только по долговым процентам выплачивают суммы, в три раза превышающие получаемую помощь.

Ухудшение экономического положения развивающихся стран несомненно отражается на всем мировом сообществе: там, где существуют вопиющие различия в уровне жизни разных народов, глобальная стабильность невозможна.

Основная причина голода и недостатка продовольствия в развивающихся странах кроется не в природных катаклизмах, а в экономической отсталости этих стран и неоколониальной политике Запада.

Эпицентр глобальной экологической проблемы постепенно перемещается в развивающиеся регионы, которые оказываются на грани экологического кризиса.

Опасные изменения в окружающей среде развивающихся стран включают в себя непрекращающийся рост городов, деградацию земельных и водных ресурсов, интенсивное обезлесивание, опустынивание, нарастание стихийных бе

Date: 2015-12-13; view: 1214; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию