Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Система комплексных чисел





Однако действительных чисел недостаточно для того, чтобы решить любое квадратное уравнение с действительными коэффициентами. Например, уравнение вида х 2 + 1= 0 действительных корней не имеет. А это означает, что система действительных чисел нуждается в расширении.

О п р е д е л е н и е. Множество чисел вида а + bi, а, b Î R, i2 = -1, называется системой комплексных чисел С.

 

Подчеркнем, что в отличие от множества действительных чисел (R), множество комплексных чисел (С) с операциями определенными на нем не обладает свойством упорядоченности, так как имеется элемент , в частности, нельзя определить понятие быть положительным.

 

а - действительная часть комплексного числа, bi - мнимая часть комплексного числа, i = - мнимая единица, b - коэффициент при мнимой единице. Запись числа в виде z = а + bi называется алгебраической. Комплексное число z = а + bi равно нулю тогда и только тогда, когда а = 0 и b = 0. Два комплексных числа z1 = а1 + b1i и z2 = а2 + b2i называются равными, если а1 = a2, и b1 = b2, в этом случае пишут: z1 = z2.

Число = а - bi называется сопряженным для числа z = а + bi, при этом числа z и называются взаимно сопряженными. Например, числа z = 2 + i и z = 2 - i; z = -5 - i и z = -5 + i, z = i и z = -i будут взаимно сопряженными.

Арифметические действия над комплексными числами проводятся по следующим правилам. Пусть z1= а1+b1i z2= а2+b2i. Тогда: ; ;

. Таким образом, видим, что если z= a+bi и =a-bi, то z = a2+b2.

П р и м е р ы. Выполнить действия:

1. (2 + 3 i) + (8 - 5 i) = 10 - 2 i.

2. (-1 - i) - (2 + 3 i) = -3 - 4 i.

3. (10 - i)(2 + i) = 21+8 i.

4. .

Геометрически комплексные числа можно изображать точками плоскости, абсциссами которых служат действительные части, а ординатами - коэффициенты при мнимой единице. Таким образом, если z= a+bi, то на плоскости ХОУ это будет точка М (а, b). Так как любой вектор плоскости с началом в точке O (0,0) определяется координатами конца, то комплексные числа также изображают радиус – векторами (рис. 1).

Рис. 1

Кроме алгебраической формы комплексное число может быть записано с помощью тригонометрической формы. Введем следующие определения.

О п р е д е л е н и е. Модулем комплексного числа z= а+ bi называется арифметический квадратный корень из суммы квадратов его действительной части и коэффициента при мнимой единице: |z| = r = .

О п р е д е л е н и е. Аргументом комплексного числа z = а + bi называется число , для которого .

Возьмем на плоскости точку М(а, b), пусть ей соответствует комплексное число z = а + bi. Обозначим через j угол, который образует радиус – вектор ОМ с положительным направлением оси ОХ.

 

Из D ОМА (рис.2) AO = OM cos j, AM = ОМ sin j, но ОМ = = г, ОА =а; AM =b; тогда z = а + bi = rcosj + irsinj = r(cosj + isinj).

Запись числа z = r(cosj + isinj) называется тригонометрической формой комплексного числа.

С геометрической точки зрения, модуль комплексного числа представляет собой длину радиус-вектора, который это число изображает, а аргумент - это угол, который образует данный радиус-вектор с положительным направлением оси ОХ.

П р и м е р. Найти модуль, аргумент и записать число z = 1- i в тригонометрической форме.

Имеем r = = ; cos j = ; sin j = ; тогда j = и .

Используя тригонометрическую форму комплексного числа, умножение и деление комплексных чисел можно выполнять так: если , , то z1z2 = r1r2 [cos (j1+j2) + i sin (j1+j2) ], .

Операции же возведения в целую степень и извлечения корня удобнее проводить в тригонометрической форме. Так, для возведения в целую степень n комплексного числа z = r( cos j + i sin j) известна формула Муавра:

zn = rn( cos nj + i sin nj).

 

Отметим, что возведение комплексных чисел в натуральную степень можно выполнять и в алгебраической форме, просто перемножая число само на себя или воспользовавшись биномом Ньютона.

 

П р и м е р. Найти (2 + 2 i)5.

Если z = 2 +2i, то r = , cos j = , sin j = , j = . Тогда

, а .

Для извлечения корня степени n Î N из комплексного числа z = = r (cos j + isin j) используется следующая формула:

, k = 0, 1, 2,..., n-1.

П р и м e p. Найти . Найдем тригонометрическую форму подкоренного выражения:

; ; ; ; .

, k = 0, 1, 2, 3.

;

;

;

.

 

 

Контрольные вопросы

 

После ознакомления с теоретическим материалом студентам предлагается ответить на несколько вопросов по данной теме. Это делается с целью закрепления нового материала и контроля его усвояемости. Форма ввода ответа на вопросы предполагает использование как классической кроудеровской системы, так и возможность ввода конструированного ответа, когда студент конструирует свой ответ из предложенных фрагментов. Система вопросов подбиралась с учетом следующих требований:

– широкий охват нового теоретического материала;

– разноплановость в смысле возможных вариантов ответов;

– отсутствие вопросов предполагающих ответы типа «да» – «нет» и ответов требующих пояснения.

Блок ответов на контрольные вопросы устроен таким образом, что дав ответ на первый вопрос, студенты могут перейти к последнему, затем вернуться назад и исправить первый ответ. Ответ, данный на вопрос, не исчезает, он остается доступным для редактирования и по прошествию некоторого времени. Во время ответа на вопросы доступ к теоретическому материалу не возможен. После получения ответов на все вопросы студентам предлагается закрыть сеанс ответов на вопросы и перейти к решению практических заданий. После этого момента вернуться к вопросам и что-либо исправить уже нельзя. По окончанию сеанса работы с учебником система проанализирует полученные ответы на предмет их правильности и полноты и выставит оценку по пятибальной шкале.

Ниже приводится схема вопросов предлагаемых студентам:

 

1. Дайте определение числового множества.

2. Какие числовые системы вам известны?

3. Какие принципы лежат в основе расширения числовых множеств?

4. Как определяется множество натуральных чисел?

5. Что собой представляет метод математической индукции?

6. Дайте определение множества целых чисел.

7. Какие основные факты теории целых чисел вам известны?

8. Как определяется множество рациональных чисел?

9. Дайте определение множества действительных чисел.

10. Дайте определение системы комплексных чисел.

11. Какие формы употребляются для записи комплексных чисел?

12. Какова геометрическая интерпретация комплексного числа, его модуля и аргумента?

13. Как умножаются, делятся и возводятся в степень комплексные числа, заданные в тригонометрической форме.

14. Как извлечь корень n-й степени из комплексного числа?

 

Каждый из вопросов предполагает только один правильный ответ, ответ, не совпадающий с правильным, считается неправильным.

После завершения ответов на вопросы студенты переходят к решению практических заданий.

 

Date: 2016-02-19; view: 1050; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию