Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Умножение матриц



 

Число столбцов матрицы A должно быть равно числу строк матрицы B, тогда говорят, что эти две матрицы согласуются по форме, и произведение AB существует. Если матрица A имеет размерность (m×n), а матрица B имеет размерность (n×k), то матрица C, являющаяся результатом произведения AB=C, будет иметь размерность (m×k). Условно это обозначим так:

.

Для матриц A (m×n) и B (n×m) существует как произведение AB, так и произведение BA. Произведение AB имеет размерность (m×m), а произведение BA - размерность (n×n). Естественно, что они в общем случае не равны. Даже в случае m=n, а значит, при одинаковой размерности (m×m) произведений AB и BA, эти произведения не обязательно равны. Если же оказывается, что они равны, т.е. AB=BA, то в этом случае говорят, что матрицы коммутативны.

Пример 3. Вычислить произведения указанных матриц:

;

.

Свойства умножения матриц. Умножение в общем случае не коммутативно, ассоциативно и дистрибутивно.

1. Некоммутативность:

AB≠BA.

2. Ассоциативность:

(AB)C=A(BC).

3. Дистрибутивность:

(A+B)C=AC+BC.

Умножение на скаляр.

При умножении на скалярную величину каждый элемент матрицы умножается на него.

Умножение на диагональную матрицу.

Умножение слева матрицы A на диагональную матрицу D эквивалентно операции эквивалентную операции со строками A. При умножении справа матрицы A на диагональную матрицу D операции производятся со столбцами матрицы A.

Умножение транспонированных матриц(транспонирование произведения матриц):

(A∙B)T = BTAT.

Умножение на единичную матрицу.

Умножение как слева, так и справа на единичную матрицу не изменяет исходную матрицу, т.е.








Date: 2016-02-19; view: 50; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.008 sec.) - Пожаловаться на публикацию