Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Термоядерная энергия. Одним из перспективных источников получения электричества является освоение термоядерной энергии, т.е





 

Одним из перспективных источников получения электричества является освоение термоядерной энергии, т.е. энергии трития и дейтерия, содержащихся в неисчерпаемых количествах в воде океанов.

Во время химической реакции изменяются электронные оболочки атомов. В результате ядерной реакции иным становится строение атомного ядра – гораздо более прочного, чем атом. Поэтому при распаде тяжелых ядер (в реакции деления) или, наоборот, при слиянии легких (в реакциях синтеза), когда образуются ядра элементов средней массы, выделяется огромное количество энергии.

Например, при делении одного атома урана – реакции, используемой для получения энергии в современных атомных станциях, - выделяется около 1 МэВ энергии на каждый нуклон. (Нуклонами называют протоны и нейтроны, являющиеся составными частями ядер атомов.) В ходе реакции дейтерия D (тяжелого водорода, атом которого содержит в ядре нейтрон n) с протоном p синтезируется изотоп гелий-3, излучается γ-частица и выделяется примерно 5 МэВ энергии на один нуклон, т.е. в 5 раз больше:

1D2 + p → 2He3 + γ.

В природной воде один атом дейтерия приходится на 7 тыс. атомов водорода, но дейтерия, содержащегося в стакане воды достаточно, чтобы произвести столько же энергии, сколько можно получить при сгорании бочки бензина. В Мировом океане 4·1013 т дейтерия; его хватит всем жителям Земли на 4 тыс. лет.

Еще больше энергии выделяется в реакциях сверхтяжелого изотопа водорода – трития Т, в ядре которого два нейтрона:

1T3 + p → 2He4+ γ + 19,7 МэВ

1T3+1D2 2He4 + n + 17,6 МэВ

Трития в природе нет, но в достаточных количествах его можно получить в атомных реакторах, воздействуя потоком электронов на атомы лития:

N + 3Li7 2He4 + T

Однако осуществить эту реакцию весьма непросто: она начнется лишь в том случае, если ядра атомов сблизятся настолько, что возникнут силы ядерного притяжения (так называемого сильного взаимодействия). Это расстояние на пять порядков меньше размеров атома, и, пока электроны остаются на своих орбитах, они не позволят ядрам атомов сблизиться. Да и сами ядра до начала сильного взаимодействия расталкиваются кулоновскими силами.

 

Заключение

 

Итак, спор о том, что опаснее, а что выгоднее в производстве электроэнергии пока что не завершен. Да и вряд ли буде окончательно завершен в ближайшее время. Человечество постоянно совершенствует способы получения так необходимой ему энергии, в том числе электрической. Но будет ли у этого и другого нового способа будущее, и насколько они окажутся безопасными для человека и природы? Эти вопросы необходимо решать намного раньше, не дожидаясь аварий и катастроф, которые становятся более опасными по мере проникновения человеческого разума в тайны природы.

Несмотря на внешнюю привлекательность «нетрадиционных» видов получения электроэнергии, иногда называемых «малой энергетикой», у них есть ряд недостатков. Само это второе название говорит, прежде всего, о том, что с их помощью пока, на современном уровне развития техники и экономики, невозможно получить так же много электроэнергии, как с помощью тепловой, гидро- или атомной энергетики. Но, возможно, этот недостаток преодолим в ближайшие десятилетия. А вот какие могут быть вредные последствия от развития такой нетрадиционной энергетики?

Например, существует в мире несколько электростанций, которые используют энергию приливов и отливов в океанах и морях. Казалось бы, что может быть лучше – практически безотходный способ получения энергии, почти вечный двигатель. Но, оказывается, если таких станций построить много, они могут существенно замедлить вращение Земли вокруг своей оси! Вред от такого вмешательства в природу может совершенно непредсказуемым и непоправимым. Солнечные электростанции так же, как и ветряные, и геотермальные пока могут быть построены далеко не везде.

А в Германии чрезмерное использование энергии ветра привело к ослаблению ветров, которые раньше выдували смог и вредные отходы, выделяемые в окружающую среду фабриками и заводами, с территории городов. Теперь экология этих населенных пунктов заметно ухудшилась.

А главный их недостаток на сегодня – это дороговизна, в большой потребности количества материалов и в очень обширной территории, которая тоже не везде может быть найдена. Строят солнечные станции на крышах домов и в космосе, на орбитальных станциях. При этом используют самые современные солнечные батареи. Но, к сожалению, заменить собой традиционные виды получения электроэнергии в нужном количестве они пока не могут.

В наши дни ведущими видами топлива пока остаются нефть и газ. Но за каждым новым кубометром газа или тонны нефти нужно идти все дальше на север или восток, зарываться все глубже в землю. Не мудрено, что нефть и газ будет стоить все дороже. Замена? Нужен новый лидер энергетики. Им, несомненно, станут ядерные источники. Запасы урана, если сравнить их с запасами угля, вроде бы не столько уж и велики. Но зато на единицу веса он содержит в себе энергию в миллионы раз большую, чем уголь. А итог таков: при получении электроэнергии на АЭС нужно затратить в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю…

Всегда было так: следующий источник энергии был более мощным. То была «воинствующая» линия энергетики. Часто она шла рука об руку с военными приложениями: атомная бомба, водородная. В погоне за избытком энергии человек все глубже погружался в стихийный мир природных явлений и до какой-то поры не очень задумывался о последствиях своих дел и поступков. Но времена изменились. Сейчас, в конце ХХ века, начинается новый, значительный этап земной энергетики. Появилась энергетика «щадящая», построенная так, чтобы человек не рубил сук, на котором он сидит, заботился об охране уже сильно поврежденной биосферы.

Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя самые новейшие идеи, изобретения, достижения науки. Это и понятно: энергетика связана буквально со всем, и все тянется к энергетике, зависит от нее. Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, находящаяся в кварках, «черных дырах», вакууме, - это всего лишь наиболее яркие вехи, штрихи того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

 

 

Список используемой литературы

 

«Энергия будущего» А.Н. Проценко, М., «Мол. Гвардия», 1980

«Ключ к Солнцу» Е.Б. Борисов, И.И. Пятнова, М., Мол. Гвардия, 1964

Энциклопедия для детей. Техника, М., «Аванта+», 1999

Энциклопедия для детей. География, М., «Аванта +», 1994

«Энергетика: проблемы и надежды», Л.С. Юдасин, М., «Просвещение», 1990

«Энергетика сегодня и завтра», А.Н. Проценко, М., «Мол. Гвардия», 1987

«Занимательно об энергетике», Ю.Г. Чирков, М., «Мол. Гвардия», 1981

«Человек и океан», Громов Ф.Н., Горшков С.Г., С.-П., ВМФ, 1996 г.

 

Date: 2015-05-23; view: 460; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию