Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Вынужденные колебания





Цель работы:

Знакомство с компьютерной моделью вынужденных механических колебаний.

Экспериментальное исследование амплитудно-частотной характеристики пружинного маятника.

 

Основные понятия:

Колебания, совершающиеся под воздействием внешней периодической силы, называются вынужденными.

Внешняя сила совершает положительную работу и обеспечивает приток энергии к колебательной системе. Она не дает колебаниям затухать, несмотря на действие сил трения.

Периодическая внешняя сила может изменяться во времени по различным законам. Особый интерес представляет случай, когда внешняя сила, изменяющаяся по гармоническому закону с частотой ω, воздействует на колебательную систему, способную совершать собственные колебания на некоторой частоте ω0.

Если свободные колебания происходят на частоте ω0, которая определяется параметрами системы, то установившиеся вынужденные колебания всегда происходят на частоте ω внешней силы.

После начала воздействия внешней силы на колебательную систему необходимо некоторое время Δt для установления вынужденных колебаний. Время установления по порядку величины равно времени затухания τ свободных колебаний в колебательной системе.

В начальный момент в колебательной системе возбуждаются оба процесса – вынужденные колебания на частоте ω и свободные колебания на собственной частоте ω0. Но свободные колебания затухают из-за неизбежного наличия сил трения. Поэтому через некоторое время в колебательной системе остаются только стационарные колебания на частоте ω внешней вынуждающей силы.

Рассмотрим в качестве примера вынужденные колебания тела на пружине (рис. 2.5.1). Внешняя сила приложена к свободному концу пружины. Она заставляет свободный (левый на рис. 2.5.1) конец пружины перемещаться по закону

y = ym cos ωt,

где ym – амплитуда колебаний, ω – круговая частота.

Такой закон перемещения можно обеспечить с помощью шатунного механизма, не показанного на рисунке 1.

Рисунок 1. Вынужденные колебания груза на пружине.

Свободный конец пружины перемещается по закону y = ym cos ωt. l – длина недеформированной пружины, k – жесткость пружины

Если левый конец пружины смещен на расстояние y, а правый – на расстояние x от их первоначального положения, когда пружина была недеформирована, то удлинение пружины Δl равно:

Δl = x – y = x – ym cos ωt.

Второй закон Ньютона для тела массой m:

ma = –k(x – y) = –kx + kym cos ωt.

В этом уравнении сила, действующая на тело, представлена в виде двух слагаемых. Первое слагаемое в правой части – это упругая сила, стремящаяся возвратить тело в положение равновесия (x = 0). Второе слагаемое – внешнее периодическое воздействие на тело. Это слагаемое и называют вынуждающей силой.

Уравнению, выражающему второй закон Ньютона для тела на пружине при наличии внешнего периодического воздействия, можно придать строгую математическую форму, если учесть связь между ускорением тела и его координатой:

Тогда уравнение вынужденных колебаний запишется в виде

где – собственная круговая частота свободных колебаний, ω – циклическая частота вынуждающей силы. В случае вынужденных колебаний груза на пружине (рис. 2.5.1) величина определяется выражением:

.

Это уравнение не учитывает действия сил трения.

С учетом сил трения уравнение вынужденных колебаний имеет вид:

,

где - коэффициент затухания.

Решение этого дифференциального уравнения состоит из двух частей: общего решения и частного решения:

,

где первое слагаемое отвечает собственным затухающим колебаниям, а второе – вынужденным.

Установившиеся вынужденные колебания груза на пружине происходят на частоте внешнего воздействия по закону

x(t) = А(w)cos (ωt + j).

Можно показать, что xm и j зависят от ω следующим образом:

,

.

Амплитуда вынужденных колебаний при

На очень низких частотах, когда ω << ω0, движение тела массой m, прикрепленного к правому концу пружины, повторяет движение левого конца пружины. При этом x(t) = y(t), и пружина остается практически недеформированной. Внешняя сила , приложенная к левому концу пружины, работы не совершает, т. к. модуль этой силы при ω << ω0 стремится к нулю.

Если частота ω внешней силы приближается к собственной частоте ω0, возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом. Зависимость амплитуды xm вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой (рисунок 2).

При резонансе амплитуда xm колебания груза может во много раз превосходить амплитуду ym колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (< 10) резонансная частота несколько смещается в сторону низких частот. Это хорошо заметно на рисунке 2.

Рисунок 2. Амплитудно-частотная характеристика

Резонансные кривые при различных уровнях затухания: 1 – колебательная система без трения; при резонансе амплитуда xm вынужденных колебаний неограниченно возрастает; 2, 3, 4 – реальные резонансные кривые для колебательных систем с различной добротностью: Q2 > Q3 > Q4. На низких частотах (ω << ω0) xm ≈ ym. На высоких частотах (ω >> ω0) xm → 0.

Перейдите от окна теории к окну модели, щелкнув по изображению «Модель. Вынужденные колебания». Внимательно рассмотрите рисунок, найдите все регуляторы и другие основные элементы.

Обратите внимание, что в данной работе коэффициент вязкого трения r обозначен как b. Установите флажок к графику x,t и v,t. Нажмите кнопку «Старт». Пронаблюдайте картину вынужденных колебаний пружинного маятника, изменяя параметры колебательной системы. Обратите внимание на то, что установившиеся вынужденные колебания всегда происходят на частоте вынуждающей силы. Получите у преподавателя допуск для выполнения измерений.

Порядок измерений и обработка результатов:

ЭКСПЕРИМЕНТ 1. Определение резонансной частоты колебательной системы.

  1. Установите значения m, r1 и k, соответствующие вашей бригаде
  2. Выберите график x,t (для бригад 1-4), выберите график v,t (для бригад 5-8).
  3. Установите значение частоты вынуждающей силы w=3.0 с-1. Измерьте с помощью линейки (или нажимая кнопку «Стоп») амплитуду установившихся колебаний x max.
  4. Увеличивая значение частоты на 0.5 с-1, наблюдайте вынужденные колебания. Повторите измерение амплитуды. При частоте, близкой к частоте резонанса, значение частоты изменяйте через 0.1 с-1. Результаты заносите в таблицу 2.
  5. Установите значение частоты вынуждающей силы w=w0. Пронаблюдайте явление резонанса. Измерьте амплитуду.
  6. Постройте амплитудно-частотную характеристику A (w).
  7. Повторите измерения пп. 3-5 для двух других значений коэффициента вязкого трения r, увеличивая его значение на 0.2 кг×с-1. Постройте амплитудно-частотную характеристику A (w) для r2 и r3 на том же графике.

ТАБЛИЦА 1. Параметры колебательной системы (не перерисовывать)

Бригада                
m [кг]                
k [Н/м]                
r=b[кг×с-1]                

ТАБЛИЦА 2. Результаты измерений при m= ____ кг, k = ____ Н/м.

  r1= ____кг×с-1. r2= ____кг×с-1. r3= ____кг×с-1.
w, с-1 A., см w, с-1 A., см w, с-1 A., см
           
           
           
           
           
           
           
             
  w0=   w0=   w0=  

Date: 2015-05-22; view: 819; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию