Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Решение. 1. Определить абсолютные и относительные удлине­ния стержней и значение силы P = P1, при котором в наиболее напряженном стержне напряжения достигают предела





1. Определить абсолютные и относительные удлине­ния стержней и значение силы P = P 1, при котором в наиболее напряженном стержне напряжения достигают предела упругости. Заданная система (рис.20.4, а) один раз статически неопределима. Применяя метод сечений (рис.20.4, б) и составляя уравнения равновесия статики, последовательно можем определить:

или

. (20.21)

Рис. 20.4

Согласно деформированной схеме, изображенной на рис.20.4, а, из геометрических соображений, уравнения для опре­деления относительных деформаций записываются в виде:

. (20.22)

С учетом , и принимая во внимание, что на первом этапе нагружения все элементы заданной системы деформируются согласно закону Гука, т.е. , получим:

. (20.23)

С учетом (20.23) из (20.21) и (20.22) можно получить следу­ющую замкнутую систему уравнений относительно усилий N 1 и N 2:

Откуда определяются:

. (20.24)

Для выражения напряжения в среднем в элементах заданной системы имеем:

(20.25)

Откуда следует, что . Следовательно, в процессе на­гружения сначала средний стержень переходит в пластическую ста­дию деформирования, а затем боковые стержни, т.е. при всех на­гружения средний стержень, вплоть до стадии разрушения задан­ной системы, будет наиболее напряженным.

Принимая в (20.25), что и P = P 1, окончательно полу­чим:

кН.

Абсолютные удлинения стержней принимают значения:

Относительные удлинения стержней принимают значения:

2. Определить абсолютные и относительные удлине­ния стержней и значение силы P = P 2, при котором все элементы заданной системы переходят в пластическую стадию деформирования. Физические уравнения взамен закона Гука в случае, когда стержни переходят в пластическую стадию деформирования, т.е. при , , в данном случае записываются в виде:

, (20.26)

которое представляет собой уравнение прямой линии, описыва­ющей диаграмму деформирования в области пластических дефор­маций (рис.20.4, в).

В начале по очевидным соотношениям определяется значение деформаций , соответствующее началу пластической стадии де­формирования стержней и модуля деформаций в пластической ста­дии их деформирования:

кН/м2.

Заметим, что на данном этапе нагружения, т.е. когда , боковые элементы заданной системы деформируются упруго, а средний элемент - будет находиться в пластическом состоянии.

Учитывая, что при P = P 2 будем иметь , , по­следовательно определим значения усилий и абсолютное удлинение в боковых стержнях при их переходе в пластическую стадию де­формирования:

кН;

м.

Учитывая выражения (20.22) и (20.26) определяется значение абсолютного и относительного удлинения, а также усилия в среднем стержне, в момент перехода боковых стержней в пластическую стадию их деформирования:

м;

м;

кН.

Далее из уравнения равновесия (20.21) вычисляется величина внешней силы P = P 2:

кН.

3. Определить абсолютные и относительные удлине­ния стержней и значение силы P = P 3, при котором в наиболее напряженном стержне напряжения достигают значения, равного временному сопротивлению , т.е. при дальнейшем увеличении силы P происходит разруше­ние заданной системы. Сначала вычисляем значения удлине­ний в боковых стержнях, при достижении в среднем стержне пре­дельных напряжений и деформаций , .

Учитывая, что получим:

.

Таким образом, к моменту разрушения среднего стержня (, ) боковые стержни также находятся в пластической стадии деформирования. Напряжения в боковых стержнях, в мо­мент разрушения среднего стержня, принимают значения:

кН/м2.

Для определения величины внешней силы P = P 3, т.е. значения силы в момент разрушения среднего стержня из уравнения равно­весия (20.21) имеем:

кН.

Как показывают результаты расчетов, для перехода среднего стержня в пластическую стадию деформирования необходима была внешняя сила P = P 1 = 119,5 кН, а для его разрушения - P = P 3 = 200,97 кН.

На основании полученных результатов можно заметить, что если бы мы ограничивались только учетом упругой стадии работы конструкции, т.е. P £ P 1, то несущая способность заданной систе­мы оценивалась бы как P = P 1 = 119,5 кН.

Как показали расчеты, учет пластической стадии работы позво­лил выявить дополнительные резервы несущей способности задан­ной системы, т.к. величина разрушающей силы заданной системы в действительности равна P = P 3 = 200,97 кН.

В заключении определим величины абсолютных удлинений стержней в момент разрушения среднего стержня:

м;

м.

Легко определить во сколько раз абсолютные удлинения стерж­ней возросли за счет возникновения пластических деформаций по отношению к их абсолютным удлинениям в момент перехода среднего стержня от упругой к пластической стадии деформирова­ния:

раз;

раз.

4. Рассматривая систему (рис.20.4, а) при отсутствии среднего стержня в процессе ее нагружения, определить абсолютные и относительные удлинения элементов сис­темы, и внешней силы P = P 4, при котором в ее элемен­тах напряжения достигают значения, равного времен­ному сопротивлению . Исключая средний стержень, система превращается из статически неопределимой в статически опреде­лимую. Применяя метод сечений, легко установить, что уравнения равновесия в данном случае принимают следующий вид:

. (20.27)

В конце упругой стадии работы элементов заданной системы имеем, что , . С учетом данного обстоятельства последовательно определим значение усилия N 1, абсолютное удли­нение стержней и величину силы P = P 1, соответствующих концу упругой стадии работы данной системы:

кН;

м;

кН.

При дальнейшем нагружении системы, то есть при P > P 1 = 86,6 кН, элементы данной системы переходят в пластическую стадию деформирования. Последовательно определим значение внутренних усилий, абсолютных удлинений и величину разруша­ющей силы P = P 2, при достижении напряжений и деформаций предельных значений. Т.е. при , :

кН;

м;

кН.

Анализируя полученные результаты, можно сделать следующие выводы.

Как и для трехстержневой статически неопределимой системы, так и для двухстержневой статически определимой системы, учет пластических деформаций позволил выявить дополнительные ре­зервы систем по несущей способности. Если бы мы ограничились только упругим расчетом, расчетная несущая способность двух­стержневой системы была бы равна P = P 1 = 86,6 кН. А за счет учета упруго-пластической работы элементов системы, как было показано, несущая способность будет исчерпана при P = P 2 = = 135,1 кН, т.е. при нагрузке в 1,56 раза больше, чем при упругом расчете.

Далее заметим, что за счет удаления одного среднего элемента из исходной системы, несущая способность и жесткость системы, соответственно, уменьшилась в и в раз.

Date: 2015-05-22; view: 727; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.007 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию