Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника







Метод Жордановых исключений





 

В основе метода Жордановых исключений лежат элементарные преобразования типа Гаусса, с помощью которых приводим матрицу системы к единичной . Тогда расширенная матрица СЛАУ

примет вид: .

Автоматически получим решение СЛАУ: (см. пример 11).

 

При решении СЛАУ методом Жордановых исключений удобно расширенную матрицу системы записывать в виде следующей таблицы:

 

 

1.9. Ранг матрицы. Теорема КронекераКапелли

 

Наивысший порядок отличных от нуля миноров матрицы называется рангом этой матрицы и обозначается . Для вычисления ранга матрицы применяем метод окаймляющих миноров.

 

Например, задана матрица

Находим ее окаймляющие миноры:

; ; .

Окаймляющий минор 3-го порядка равен нулю, следовательно ранг равен порядку предыдущего минора , т. е. .

Замечание. Минор порядка , содержащий в себе минор порядка , называется окаймляющим минором . Если у матрицы найдется минор , а все окаймляющие его миноры , то .

Рассмотрим произвольную систему вида (16)

Основная матрица этой системы , а расширенная , где , . Система (16) будет совместной (т.е. будет иметь решение) тогда и только тогда, когда ранг матрицы системы совпадает с рангом расширенной матрицы этой системы, т.е.

 

.

 

Это и есть теорема Кронекера–Капелли.

Для ранга системы возможны два случая:

1) если общий ранг равен числу неизвестных , то система (16) будет иметь единственное решение;

2) если , то система (16) будет иметь бесконечное число решений.

Если же , то система (16) несовместна, т.е. не имеет решений.

 








Date: 2015-04-23; view: 833; Нарушение авторских прав

mydocx.ru - 2015-2017 year. (0.005 sec.) - Пожаловаться на публикацию