Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Соотношение неопределённостей





Обнаружение волновых свойств микрочастиц означает, что классическая механика не может дать правильного описания поведения микрообъектов. Новая физическая теория, устанавливающая законы движения и взаимодействия микрочастиц и фотонов с учетом их волновых и корпускулярных свойств, была разработана, главным образом, тремя физиками: Э. Шредингером (австр.), В. Гейзенбергом (нем.) и П. Дираком (англ.) в начале ХХ века и получила название волновой или квантовой механики.

В классической механике всякая частица движется по определённой траектории, так что ее координаты и импульс могут быть точно рассчитаны для любого момента времени. Совсем по иному обстоит дело, если рассматривается вопрос о локализации волнового процесса, т.е. о месте нахождения волны в данный момент времени. Ведь волна не имеет ни определенной траектории, ни определенной координаты. Т.о. возникает необходимость внести некоторые ограничения в применении к объектам микромира понятий классической механики.

Эти ограничения сформулированы Гейзенбергом и получили название соотношений неопределенностей. Основное из них гласит: чем точнее определены какие-либо из координат частицы, тем больше неопределенность в значении составляющей импульса (или скорости) в том же направлении, и наоборот. Количественно это записывается так:

 

Δ x ·Δp x ≥ ђ Δ x ·Δυ x ≥ ђ/m,

Δ y ·Δp y ≥ ђ Δ y ·Δυ y ≥ ђ/m, (3)

Δ z ·Δp z ≥ ђ Δ z ·Δυ z ≥ ђ/m,

 

где Δ x, Δ y, Δ z – неопределенности координат; Δp x, Δp y, Δp z – неопределенности проекций импульса на оси – x, y, z; Δυ x, Δυ y, Δυ z – неопределенности проекций скоростей на соответствующие оси; m – масса микрочастицы; ђ = h/2π – постоянная Планка с крышечкой.

Из соотношения неопределенностей следует: если положение частицы точно известно (Δx=0), то в этом состоянии проекция импульса на ось х-ов совершенно не определена (Δpх → ∞), и наоборот.

Покажем, что соотношение неопределенностей действительно вытекает из волновых свойств микрочастиц. Рассмотрим мысленный опыт по дифракции потока электронов на щели шириной Δ x ~ λ, расположенной перпендикулярно к направлению движения частиц (рис. 3).

До прохождения через щель p х = 0; ∆p х = 0, а координата x не определена, т.е. ∆ x → ∞. В момент прохождения через щель координата электрона имеет неопределенность ∆ x равную ширине щели. В то же время, из-за дифракции, электроны отклоняются от первоначального направления и будут двигаться в пределах угла 2φ, где φ – угол дифракции. Теперь появляется неопределенность в значении составляющей импульса вдоль оси x -ов:

 

∆p х = p∙sinφ = h sinφ / λБ. (4)

 

Если даже ограничиться электронами, попадающими на экран в пределах центрального максимума, то sinφ найдем из условия 1-ого минимума на щели (bsinφ = kλ, где b – ширина щели, k – порядок минимума):

x ∙sinφ = λБ. (5)

 

Подставляя выражение для sinφ в (4), после преобразования получим

 

Δ x ·Δpx = h (6)

 

Учитывая главные max более высоких порядков, куда тоже попадают электроны, окончательно будем иметь:

 

Δ x ·Δp x ≥ h ≥ ђ (7)

 

Следует подчеркнуть, что невозможность одновременного и точного определения координаты и соответствующей составляющей импульса не связана с несовершенством наших знаний или неточностью приборов, а является следствием специфических и вместе с тем объективных свойств микрообъектов.

Проиллюстрируем оценку границ применимости теории на примерах.

1. Скорость движения электрона в электроннолучевой трубке составляет υ х= 106 м/с и определена с точностью до Δυ х= 102 м/с. Тогда неопределенность координаты:

Δ x ·Δυ x ≥ ђ/m, .

Т.е. в данном случае можно говорить о точке падения каждого отдельного электрона на экран и о траектории.

2. Скорость движения электрона в атоме водорода υ х ~ 106 м/с, неопределенность координаты порядка диаметра атома Δ x = d ~ 10-10 м. Тогда неопределенность величины скорости

Т.е. неопределенность скорости соизмерима с самой скоростью. Это означает, что электрон не может теперь рассматриваться как дискретная частица.

Соотношение неопределенностей может быть записано для любой пары взаимосвязанных характеристик состояния микрочастиц, например, для энергии и времени пребывания в этом энергетическом состоянии:

ΔЕ·Δt ≥ ђ. (8)

 

Из данного соотношения видно, что разброс энергии ΔЕ = ђ/Δt возрастает с уменьшением среднего времени пребывания системы в состоянии с энергией Е. Отсюда, следует, что частота излученного фотона также должна иметь неопределенность:

Δ v = ΔЕ / h, (9)

т.е. линии спектра, обусловленные переходом электронов между уровнями Е1 и Е2 с ΔЕ = Е1 – Е2, будут иметь размытие по частоте равное Δ v= v 0 ± ΔЕ / h, что подтверждается опытом.

 

 

Date: 2015-05-19; view: 432; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию