Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теплофизическая модель





Рассмотренные процессы температурного изменения веса нагреваемого и охлаждаемого стержня можно описать на основе простой теплофизической модели. Представим формулу (14) в виде

, (17)

где - температурный коэффициент, зависящий от физических характеристик материала тела. Если плотность и температура в объеме тела неоднородны и изменяются во времени, зависимость веса тела принимает вид

, (18)

где интеграл вычисляется по всему объему тела.

Изменение во времени кажущейся массы нагреваемого и охлаждаемого стержня математически выражается известными решениями уравнений теплопроводности [38,39]. Нагревание металлического стержня, к торцу которого присоединен пьезокерамический преобразователь, в значительной степени происходит вследствие передачи тепла от нагретого преобразователя к стержню. Для расчета зависимости температуры длинного тонкого стержня от координаты и времени, в первом, сравнительно грубом, приближении, положим температуру одного конца стержня постоянной, и температуру окружающей среды равной . При этом функция имеет вид

, (19)

 

где - радиус стержня, - коэффициент теплообмена на боковой поверхности стержня, - коэффициент теплопроводности, - коэффициент температуропроводности. Расчетные зависимости при разных длительностях нагрева стержня показаны на Рис. 9.

Рис. 9 Распределение температуры по длине стержня для трех значений времен нагревания

 

Здесь численные значения параметров, входящих в (19), в системе единиц СИ положим равными: .

Изменение кажущейся массы стержня длиной >> в одномерном приближении, полагая , описывается формулой

, (20)

где .

Расчет временной зависимости массы нагреваемого металлического стержня приведен на Рис. 10; здесь ; величину температурного коэффициента в данных (приближенных) оценках положим равной .

Рис. 10. Расчетная временная зависимость кажущейся массы нагреваемого стержня

 

Сравнивая теоретическую зависимость с экспериментальными (Рис. 5 и Рис. 8) в период нагревания стержня, видно, что в начале нагрева экспериментальная и расчетная зависимости заметно различаются. Это объясняется тем, что температура нагревателя на самом деле не была постоянной (как принято в расчете), а при включении источника тепла возрастала. Тем не менее, общая тенденция монотонного уменьшения кажущейся массы стержня при его нагревании очевидна.

Для расчета изменения веса остывающего стержня воспользуемся также одномерным решением задачи о температуре стержня с теплоизолированными концами, постоянным теплообменом на поверхности и заданным начальным распределением температуры по длине стержня,

, (21)

где - удельная теплоемкость материала стержня.

 

Полагая в (21) , где - время нагрева стержня, и подставляя это выражение в (20), рассчитаем временную зависимость кажущейся массы остывающего стержня. Результаты этих вычислений при разных значениях коэффициента теплообмена приведены на Рис. 11 и Рис. 12.

 

Рис. 11. Расчетная временная зависимость кажущейся массы остывающего стержня с открытой боковой поверхностью

 

 

 

Рис. 12. Расчетная временная зависимость кажущейся массы остывающего стержня, помещенного в теплоизолятор

 

 

На Рис. 11 характерно наличие минимума на временной зависимости кажущейся массы стержня, что и наблюдается в эксперименте при взвешивании стержня с открытой боковой поверхностью (Рис. 5). Если теплообмен на поверхности стержня незначителен, что соответствует измерениям веса стержня, помещенного в сосуд Дьюара, кривая изменения веса стержня принимает монотонный характер на достаточно большом отрезке времени. Это также качественно согласуется с экспериментальными результатами (Рис. 8). Количественное соответствие расчетных и экспериментальных данных может быть достигнуто при более полном описании режимов нагревания и остывания стержней, в том числе с учетом теплообмена на торцах стержня, трехмерного распределения температуры в объеме стержня и с учетом влияния тепловыделения в объеме стержня при поглощении ультразвука.

Итак, простая одномерная модель температурного изменения кажущейся массы стержня удовлетворительно описывает результаты экспериментов. Это подтверждает справедливость физических положений, на которых основана температурная зависимость веса тел.

 


Date: 2015-05-18; view: 506; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию