Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать неотразимый комплимент Как противостоять манипуляциям мужчин? Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?

Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Следствия из преобразований теории относи­тельности





 

Рассмотрим наиболее важные следствия преобра­зований Лоренца.

 

а) Длина тел в разных системах.

Преобразова­ния Лоренца показывают, что одно и то же тело имеет раз­ные линейные размеры в системе, в которой оно покоится, и в системе, находящейся в движении по отношению к этому телу. Предположим, что некоторый стержень, покоящийся в системе ХУZ, расположен в направлении оси ОХ и имеет в этой системе длину l (равную разности координат его конца и начала):

l=x2x1 .

Какова длина этого стержня в штрихованной коорди­натной системе, движущейся относительно стержня со скоро­стью υ в направлении его длины?

Для того чтобы найти эту длину l, нужно ее выразить как разность координат конца и начала стержня в штрихо­ванной системе х2и x1’, при этом, пользуясь преобразова­ниями Лоренца, надо координаты х2и x1взять в один и тот же момент времени, определенный в штрихованной, системе. Таким образом, связывая х2и x1с x2 и x1 надо брать фор­мулу (8), содержащую время штрихованной системы; полагая это время постоянным, имеем:

;

откуда следует:

x2’ – x1’=(x2x1) или l’=l

Стержень в координатной системе, движущейся отно­сительно него, короче, чем в системе, где стержень по­коится: Если бы мы взяли стержень, покоящийся в штрихован­ной системе, длина его была бы l’= x2’ – x1; в нештрихо­ванной системе его длина будет l= x2x1; теперь надо измерения вести в один к тот же момент времени нештрихо­ванной системы l. Пользуясь преобразованиями Лоренца (7), выражаем x2 и x1через x2и x1’. Имеем:

x2 – x1=(x2 ‘– x1 ‘) или l=l’

т. е. снова стержень длиннее в системе, в которой он по­коится. Заметим, что размеры тел в направлении осей ОУ и ОZ одинаковы в обеих системах.

Этот вывод теории относительности заменяет гипотезу о сокращении размеров тел, движущихся относительно эфира. По теории относительности стержень имеет наибольшую длину в той системе, относительно которой он покоится.

 

б) Длительность события в разных системах.



Длительность события также различна в разных координатных системах. Предположим, что в точке А с координатой х в нештрихованной координатной системе ХУZ, происходит некоторое событие, длительность которого равна τ = t2 – t1 , где t2 и t1 моменты времени конца и начала этого события, отсчитанные в координатной системе ХУZ. Какова будет длительность τ ‘= t2 ‘– t1этого события в штрихованной координат­ной системе Х'У’Z’. Мо­ментам t1 и t2, отмеченным в координатной системе ХУZ, соответствуют моменты , t2и t1отмеченные в координатной системе Х'У'Z' для точки А, т. е. для од­ного и того же значения координаты х. Нам, следо­вательно, надо применить формулу преобразования (8), свя­зывающую t’ и t при одном и том же значении х. Таким образом, имеем:

t1 = t1 – xυ/c2 ; t2 = t2 – xυ/c2

откуда следует

(t’2 – t’1) = t2 – t1 или τ’ = τ /

Промежуток τ' будет больше τ.

Можно поставить и обратную задачу. Пусть в штрихо­ванной системе (х’ постоянно) длительность некоего события τ' = t’2 – t’1 . Какова будет длительность этого события в не­штрихованной системе?

Для ответа используем преобразование (8), в котором х' положим постоянным. Тогда получим:

τ = τ’ /

Теперь промежуток τ будет больше τ’. Отсюда полу­чаем следующее заключение: длительность события, про­исходящего в некоторой точке А, меньше по отношению к той координатной системе^ относительно которой точка А покоится.

 








Date: 2015-05-18; view: 209; Нарушение авторских прав

mydocx.ru - 2015-2018 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию