Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Краткое описание схем





Вышеизложенное лучше понимается с помощью следующего описания и сопровождающих рисунков, где:

Рис. 1 - схематическое представление электронного потока в сверхпроводнике, указывающее вращения непарных электронов,

Рис. 2 - поперечное сечение сверхпроводника в критическом состоянии, иллюстрирующим электронные вращения,

Рис. 3 - вид постоянного магнита, иллюстрирующего движение потока,

Рис. 4 - поперечное сечение, иллюстрирующее диаметр магнита с Рис. 3,

Рис. 5 - проекция представляющая линейный вариант мотора на постоянных магнитах, иллюстрирующего одно положение магнита арматуры относительно магнитов статора, и указания магнитных сил, действующих на магниты арматуры,

Рис. 6 - вид, подобный Рис.5, иллюстрирующий смещение магнита арматуры относительно магнитов статора, и влияния магнитных сил в этом положении,

Рис. 7 - проекция, подобная Рис. 5 и 6, иллюстрирующая дальнейшее смещение магнита арматуры налево, и влияния магнитных сил,

Рис. 8 - вид сверху линейного варианта изобретённой концепции, иллюстрирующей пару магнитов арматуры в связи с магнитами статора,

Рис. 9 - диаметральная проекция, ротационного варианта в соответствии с изобретением как принято по секции IX-IX Рис. 10,

Рис. 10 - проекция ротационного варианта как принято по X-X рис. 9.

Описание предпочтительного варианта

Чтобы лучше понимать теорию изобретённой концепции, ссылки сделаны к Рис. 1-4.

В Рис. 1 сверхпроводник 1 имеет поток положительных частиц, как представлено стрелкой 2 и неспаренные электроны железного проводника1, которые вращаются под прямым углом к протонному потоку в проводнике, как представлено спиральной линией и стрелкой 3.

В соответствии с теорией изобретения, вращение неспаренных электронов является результатом атомной структуры железных материалов, и эта вращающаяся атомная частица, вероятно, имеет противоположный заряд и расположена под прямым углом к движущимся электронам. Предположительно, будучи очень малой в размере, эта частица способна проникнуть сквозь другие элементы, если только они не имеют другие неспаренные электроны, которые бы нейтрализовали их на пути.

Долго считалось, что имеет место недостаток электрического сопротивления проводников в критическом сверхпроводниковом состоянии и что они использовались для производства высокоэффективных электромагнитов. На Рис. 2 представлен разрез сверхпроводника в критическом состоянии, и вращения электронов обозначены стрелками 3.

Постоянный магнит может рассматриваться сверхпроводником, поскольку электронный поток там не прекращается, и - без сопротивления, а вращение неспаренных электрочастиц существуют и, согласно изобретения, используются для создания движительной силы. Рис. 3 иллюстрирует подковообразный постоянный магнит 4, и проходящий магнитный поток обозначен стрелками 5; магнитный поток течёт от Южного полюса к Северному полюсу через магнитный материал. Вращение электронов имеет место на всём диаметре магнита 5 и представлено позицией 6 в Рис. 4, а вращающиеся электронные частицы вращаются под прямым углом в металле, в то время как поток проходит сквозь магнитный материал.

Реализуя теорию вращения электронов в магнитных материалах, стало возможным с помощью подходящих материалов, геометрии и магнитной концентрации использовать вращающиеся электроны для производства движительной силы для непрерывного движения, т.е. мотора, способного совершать работу.

Похоже, варианты моторов, использующих концепцию изобретения могут быть различной формы, а в вышеупомянутых формах основные соотношения компонентов иллюстрированы, чтобы раскрыть концепцию изобретения и принципы.

Взаимодействие магнитов образующих статор 10 лучше показано на Рис. 5 -8. Магниты статора 12 имеют прямоугольную конфигурацию, Рис. 8, и намагничены так, что полюса захватывают большую поверхность магнитов, как показано от Севера к Югу. Магниты статора ограничены сторонами14, 16 и 18. Магниты статора закреплены на плите 20, из металла, который имеет высокую магнитную проницаемость, например, от компаний Netic CoNetic Perfection Mica Company of Chicago, Illinois.

Таким образом, пластина 20 будет расположена в направлении Южного полюса магнитов статора 12, и предпочтительно в прямом контакте, хотя связующий материал может находится между магнитами и плитой, поскольку требуется точное размещение магнитов на плите относительно друг-друга.

Необходимо чтобы интервал между магнитами статора12 слегка отличается между смежными магнитами статора, таким образом, чтобы изменение интервала изменяло силы, прилагаемые к концам магнитов арматуры, в любой момент, и таким образом обеспечивало более гладкое движение магнитов арматуры относительно магнитов статора. Таким образом, магниты статора так размещены относительно друг-друга, что след 22, имеет продольное направление слева направо как показано на Рис. 5-8.

На Рис. 5-7 только показан один магнит арматуры 24, в то время как в Рис. 8 показана пара магнитов арматуры. С целью понимания концепций изобретения описание здесь будет ограничено использованием отдельного магнита арматуры как показано в Рис. 5-7.

Магнит арматуры имеет удлиненную конфигурацию слева направо, Рис. 5, и может иметь прямоугольную форму в сечении. Для целей концентрации и ориентации магнитного поля магнит 24 сформирован в дугообразной форме посредством вогнутой поверхности 26 и выпуклой поверхности 28, и полюса сосредоточены на концах, как видно из Рис.5.

Для дальнейшей концентрации магнитного поля, концы магнита арматуры выполнены фасками 30 для уменьшения площади поперечного сечения концов магнита 32, и магнитный поток имеет место между полюсами магнита арматуры, как обозначен легкими пунктирами. Подобным образом магнитные поля магнитов статора 12 обозначены легкими пунктирами.

Магнит арматуры 24 расположен с определённым зазором от статора 22. Этот интервал может быть выполнен, устанавливая магнит арматуры на салазки, расположенные выше магнитов статора, или магнит арматуры может быть установлен на колесную тележку или салазки поддерживаемых немагнитной поверхностью или направляющими, расположенными между магнитами статора и магнитами арматуры.

Для лучшей иллюстрации средства поддержки магнита арматуры 24 не показаны, и такие средства не являются частью изобретения, и это должно быть понято, что средства, поддерживающие магнит арматуры предотвращают его перемещения относительно магнитов статора, но допускают свободное движение магнита арматуры налево или прямо в направлении, параллельном следу 22 определяемому магнитами статора.

Надо отметить, что длина магнита арматуры 24 слегка большая, чем ширина двух магнитов статора 12 включая интервал. Магнитные силы, действующие на магнит арматуры, когда он в положении как на Рис. 5 будут силами отталкивания 34 из-за близости сил одинаковой полярности, и силами притяжения 36 из-за противоположной полярности Южного и Северного полюсов магнита арматуры. Относительная мощность этой силы представлена толстой линией.

Результирующая векторов сил, приложенных к магниту арматуры как показано на Рис. 5 производит первичный вектор силы 38 влево, Рис.5, перемещая магнит арматуры 24 влево. На Рис. 6 магнитные силы, действующие на магнит арматуры представлены теми же самыми цифрами как на Рис. S.

В то время как силы 34 составляют силы отталкивания и имеют тенденцию переместить Северный полюс магнита арматуры от магнитов статора, силы притяжения, приложенные к Южному полюсу магнита арматуры, и в то-же время некоторые силы отталкивания, имеют тенденцию перемещать магнит арматуры дальше влево, и поскольку результирующая сила 38 продолжает быть направлена влево, магнит арматуры продолжает двигаться влево.

Рис. 7 представляет дальнейшее смещение магнита арматуры 24 налево относительно положения на Рис. 6, и магнитные силы, действующие вслед за тем представлены теми же самыми цифрами как в Рис. 5 и 6, и магнит статора продолжит двигаться налево, и такое движение продолжается по следу 22 определяемому магнитами статора 12.

Если магнит арматуры развернуть так, что Северный полюс ориентирован вправо, как рассматривается в Рис. 5, а Южный полюс, ориентированный влево, направление движения магнита арматуры относительно магнитов статора будет вправо, и теория движения идентична описанному выше.

На Рис. 8 показано несколько магнитов арматуры 40 и 42, которые соеденены связями 44. Магниты арматуры имеют форму и конфигурацию, идентичную как на Рис. 5, но магниты смежны относительно друг друга в направлении движения магнита, то есть, в направлении следа 22 определенному магнитами статора 12.

Смеживанием множество магнитов арматуры достигается более гладкое движение связанных магнитов арматуры в сравнении, т.к. имеет место вариация сил действующих на каждый магнит при его движении по пути из-за изменения в магнитных силах.

Использование нескольких магнитов арматуры имеет тенденцию "приглаживать" применение сил, приложенных к связанным магнитам арматуры, заканчивающиеся более гладким движением всей собранной арматуры магнитов. Конечно, любое число магнитов арматуры может быть включено, ограничение лишь шириной пути магнитов статора 22.

На Рис. 9 и 10 отражена концепция ротационного варианта. В этом варианте принцип действия идентичен описанному выше, но ориентация магнитов статора и арматуры такая, что вращение магнитов арматуры происходит относительно оси, а не линейное движение.

База 46, представленная на Рис.9 и 10, служит как поддержка части статора 48. Часть 48 сделана из немагнитного материала, типа синтетической пластмассы, алюминия, или подобного. Статор включает цилиндрическую поверхность 50, ось, и резьбовую часть 52.

В конструкцию статора входит кольцевое углубление 54, кольцевая втулка 56 из материала высокой магнитной проницаемости типа Netic Со-Netic и серии магнитов статора 58 прикрепленных к втулке 56 с определённым интервалом, как показано на Рис. 10. Магниты статора 58 выполнены в виде радиальной формы, имеющей изогнутую внутреннюю поверхность для соединения со втулкой 56, и выпуклую поверхность полюса 60.

Арматура 62, в показанном варианте, имеет тарелкообразную конфигурацию, имеющую радиальную часть и aксиально выступающую часть 64. Арматура 62 сформирована из немагнитного материала, и кольцевой пояс, имеющий углубление 66, служит для передачи мощности с арматуры на генератор, или на другое, потребляющее мощность, устройство.

Три магнита арматуры 68 установлены на части арматуры 64, и имеют конфигурацию, подобную конфигурации магнита арматуры на Рис. 5-7. Магниты 68 смежны относительно друг друга по окружности но не под 120 град друг к другу.

Скорее, небольшое угловое смещение магнитов арматуры имеет место, чтобы "пригладить" магнитные силы, прилагаемые к арматуре были одновременно приложены к магнитам арматуры. Смещение магнитов арматуры 68 по окружности создаёт тот же эффект, что и в смещении магнитов арматуры 40 и 42 как показано на Рис. 8.

Арматура 62 крепится на резьбовой вал 70 посредством износостойких проушин 72, и вал 70 накручивается в резьбовое отверстие статора 52, и может вращаться кнопкой 74. Такой способ вращения кнопки 74 и вала 70, аксиально смещает арматуру 62 относительно магнитов статора 58, и такое осевое смещение будет очень большим из-за магнитных сил, приложенных к магнитам арматуры 68 магнитами статора, таким образом контролирующими скорость вращения арматуры.

Как отмечено на Рис. 4-7, 9 and 10, существует воздушный промежуток между магнитами арматуры и магнитами статора и его размер влияет на величину сил, приложенных к магнитам. Если расстояние между магнитами арматуры и магнитами статора уменьшено, силы, приложенные к магнитам арматуры магнитами статора увеличены, и результирующий вектор сил имеет тенденцию увеличить смещение магнитов арматуры на их пути.

Однако, уменьшение интервала между арматурой и магнитами статора создает "пульсацию" в движении магнитов арматуры, которая являются нежелательной, но может быть, до некоторой степени, минимизирована, увеличением количества магнитов арматуры. Увеличение расстояния между арматурой и магнитами статора уменьшает тенденцию пульсации магнита арматуры, но также и уменьшает величину магнитных сил действующих на магниты арматуры. Таким образом, наиболее эффективный интервал между арматурой и магнитами статора - такой интервал, который производит максимальный вектор силы в направлении движения магнита арматуры, с минимальным созданием нежелательной пульсации.

В рассмотренных вариантах плита высокой проницаемости 20 и втулка 56 подобраны, чтобы концентрировать магнитное поле магнитов статора, и также магниты арматуры изогнуты и имеют сформированные концы для целей концентрации магнитного поля. В то время, как такая магнитная концентрация поля означает получение более высоких сил, приложенных к магнитам арматуры для данной магнитной интенсивности, концепция изобретения не ограничена использованием подобных средств для увеличения концентрации магнитного поля.

Как следует из вышеупомянутого описания изобретения, движение магнита арматуры или магнитов является результатом описанного взаиморасположения компонентов. Длина магнитов арматуры, связанная с шириной магнитов статора, интервалами между ними, воздушным промежутком и конфигурация магнитного поля, производят желаемый результат движения.

Концепция изобретения предполагает то, что эти соотношения могут быть различны в определенных рамках, и изобретение предназначено, чтобы рассмотреть все размерные соотношения, которые могут достичь желаемой цели движения арматуры. Посредством примера, Рис.4-7, указанные размеры использовались для создания прототипа:

Длина магнита арматуры 24 - 3.125", магниты статора 12:1" ширина; 0.25" толщина и 4" длина. Воздушный промежуток между полюсами магнита арматуры магнитов статора - приблизительно 1.5", и интервал между магнитами статора - приблизительно 0.5" (дюймов).

В действительности, магниты статора определяют направление магнитного поля отдельной полярности, поперечно пересечённой в промежутках магнитными полями, произведенными линиями силы, существующей между полюсами магнитов статора и неориентированной силы, проявленной на магните арматуры - есть результат сил отталкивания и притягивания, имеющих место при пересечении магнитов арматуры этого потока магнитного поля.

Это должно быть понято, что концепция изобретения подразумевает, что компонент магнита арматуры постоянен, а статор в сборе поддерживается для движения. Другие вариации концепции изобретения зависят от творческих способностей производителя.

Что касается термина "статор", то он подразумевает линейное или круговое расположение неподвижных магнитов, а "направление" или "длина" статора - то, что направление параллельное или круговое относительно направления движения магнитов арматуры.

Я заявляю:

1. Мотор на постоянных магнитах включает в себя, в сборе, направляющий статор, имеющий первую и вторую стороны и состоящий из совокупности постоянных магнитов, каждый из которых имеет первый и второй полюса противоположной полярности, расположенные рядом друг с другом и имеющими интервал между смежными магнитами; удлиненную арматуру постоянных магнитов, расположенную на одной из названных сторон пути движения с определённым интервалом и при наличии воздушного зазора между магнитами арматуры и магнитами статора, собранные таким образом, чтобы посредством геометрических соотношений длин, ширины и интервалов приложить непрерывную силу к магнитам арматуры в указанном направлении.

2. В моторе на постоянных магнитах, как указано в п.1, расстояние между названными полюсами арматуры и смежным направляющим статором одинаковы.

3. В моторе на постоянных магнитах, как указано в п.1, расстояние между магнитами статора изменяется.

4. В моторе на постоянных магнитах, как указано в п.1, магниты арматуры расположены на общей стороне направляющего статора и механически закреплены.

5. В моторе на постоянных магнитах, как указано в п.4, магниты арматуры смещены относительно друг друга в направлении движения.

6. В моторе на постоянных магнитах, как указано в п.1, средства концентрации магнитного поля это магниты статора.

7. В моторе на постоянных магнитах, как указано в п.6, средства концентрации поля включают лист из магнитного материала, имеющего высокую проницаемость, соединяющего сторону и полюс статора, противоположный этой стороне и полюс расположенный в направлении магнита арматуры.

8. В моторе на постоянных магнитах, как указано в п.1, магнит арматуры имеет дугообразную конфигурацию в его продольном направлении, изогнутому в направлении статора и имеет концы определённой формы для концентрации магнитного поля на этих концах.

9. В моторе на постоянных магнитах, как указано в п.1, направляющий статор имеет общую линейную конфигурацию и средства поддержки магнитов арматуры, относительно статора, для линейного движения магнитов арматуры.

10. В моторе на постоянных магнитах, как указано в п.1, магниты направляющего статора образуют круг, имеющий ось, и арматура имеет концентрично и коаксиально расположенные магниты арматуры, установленные на арматуре.

11. В моторе на постоянных магнитах, как указано в п.10, средства осевого регулирования представляют осевое соотношение магнитов арматуры и магнитов статора, могущие варьировать для регулировки степени вращения арматуры.

12. В моторе на постоянных магнитах, как указано в п.10, арматура содержит определённое число магнитов.

13. В моторе на постоянных магнитах, как указано в п.12, магниты арматуры расположены по окружности и не равномерно.

14. Мотор на постоянных магнитах в сборе имеет статор содержащий би-полярные магниты статора расположенные по окружности что означает, что магниты собраны таким образом, что образуют круг, имеющий ось а полюса магнитов направлены по радиусу относительно оси и имеют ту-же полярность; имеет арматуру способную вращаться относительно оси и статора, где по крайней мере один магнит арматуры имеет противоположный полюс с зазором по отношению к статору и всё расположено так, чтобы создавалась осевая сила для вращения арматуры.

15. В моторе на постоянных магнитах, как указано в п.14 арматура состоит из нескольких магнитов.

16. В моторе на постоянных магнитах, как указано в п.14 магниты арматуры расположены по окружности ассиметрично.

17. В моторе на постоянных магнитах, как указано в п.14 полюса магнитов арматуры имеют специальную форму для концентрации магнитного поля.

18. В моторе на постоянных магнитах, как указано в п.14, средства концентрации магнитного поля ассоциируют с магнитами статора концентрирующими магнитные поля в пространстве между магнитами статора.

19. В моторе на постоянных магнитах, как указано в п.18, средство концентрации магнитного поля включает кольцо из материала высокой магнитной проницаемости концентричное с осью и прочно соединённое с полюсами подобной полярности магнитов статора.

20. В моторе на постоянных магнитах, как указано в п.14, магнит арматуры образует аркообразную изогнутую форму в направлении полюсов, определяющих вогнутую и выпуклую стороны, при этом вогнутая сторона в направлении оси, а полюса магнитов арматуры сформированы определённым образом для создания большего магнитного поля.

21. В моторе на постоянных магнитах, как указано в п.14, средства для осевого смещения статор и арматура, соосные относительно друг друга.

22. Метод создания неориентированной движительной силы постоянными магнитами использует множество постоянных би-полярных магнитов статора, формирующих направление движения и магниты арматуры, имеющие длину, определяемую полюсами противоположной полярности подвижно закреплёнными для движения по направлению, формируемому статором, и их геометрическими размерениями создающими магнитное поле посредством магнитов статора имеющих магнитное поле общей полярности, прерываемое промежутками в поперечном направлении в направлении действия магнитных полей, созданных магнитными силовыми линиями магнитного поля созданными магнитными силами существующими между полюсами магнитов статора и направляющими магниты арматуры в пространственном соотношении к магнитному полю продольно связанному с направлением действия магнитного поля таким образом., что силы притяжения и отталкивания, приложенные к магнитам арматуры посредством магнитного поля создают неориентированную силу на магниты арматуры в направлении магнитного поля.

23. Метод создания неориентированной движительной силы, как указано в п.22, использует концентрацию магнитного поля, созданного магнитными силовыми линиями существующими между полюсами магнитов статора.

24. Метод создания неориентированной движительной силы, как указано в п.22, использует концентрацию магнитного поля, существующей между полюсами магнита арматуры.

25. Метод создания неориентированной движительной силы, как указано в п.22, использует концентрацию магнитных полей, созданных магнитными силовыми линиями между полюсами магнитов статора и концентрированным магнитным полем существующим между полюсами магнитов арматуры.

26. Метод создания движительной силы постоянными магнитами вращением неспаренных электронов, существующим в постоянных магнитах, используется чтобы произвести движительную силу, включающую формирование направленного магнитного поля статора посредством по крайней мере одного постоянного магнита, создающее магнитное поле арматуры посредством постоянного магнита и расположения магнитного поля так, чтобы создавать относительно продолжительное неориентированное непрерывное движение между полями статора и арматуры, созданными магнитами.

27. Метод создания движительной силы постоянными магнитами, как указано в п.26, использует магнитное поле статора сформированное полностью однородной полярностью.

28. Метод создания движительной силы постоянными магнитами, как указано в п.26, включает концентрацию магнитного поля направляющего статора и магнитного поля арматуры.

 

 

 

Date: 2015-05-08; view: 456; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.006 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию