Главная Случайная страница


Полезное:

Как сделать разговор полезным и приятным Как сделать объемную звезду своими руками Как сделать то, что делать не хочется? Как сделать погремушку Как сделать так чтобы женщины сами знакомились с вами Как сделать идею коммерческой Как сделать хорошую растяжку ног? Как сделать наш разум здоровым? Как сделать, чтобы люди обманывали меньше Вопрос 4. Как сделать так, чтобы вас уважали и ценили? Как сделать лучше себе и другим людям Как сделать свидание интересным?


Категории:

АрхитектураАстрономияБиологияГеографияГеологияИнформатикаИскусствоИсторияКулинарияКультураМаркетингМатематикаМедицинаМенеджментОхрана трудаПравоПроизводствоПсихологияРелигияСоциологияСпортТехникаФизикаФилософияХимияЭкологияЭкономикаЭлектроника






Теорема 4





Если вершина многогранника решений, то векторы , соответствующие положительным в разложении (16), линейно независимы.

Сформулированные теоремы позволяют сделать следующие выводы.

Непустое множество планов основной задачи линейного программирования образует выпуклый многогранник. Каждая вершина этого многогранника определяет опорный план. В одной из вершин многогранника решений (т. е. для одного из опорных планов) значение целевой функции является максимальным (при условии, что функция ограничена сверху на множестве планов). Если максимальное значение функция принимает более чем в одной вершине, то это же значение она принимает в любой точке, являющейся выпуклой линейной комбинацией данных вершин.

Вершину многогранника решений, в которой целевая функция принимает максимальное значение, найти сравнительно просто, если задача, записанная в форме стандартной, содержит не более двух переменных или задача, записанная в форме основной, содержит не более двух свободных переменных, т. е. , где n – число переменных, r – ранг матрицы, составленной из коэффициентов в системе ограничений задачи.

Найдем решение задачи, состоящей в определении максимального значения функции

(19)

при условиях

(20)

(21)

Каждое из неравенств (20), (21) системы ограничений задачи геометрически определяет полуплоскость соответственно с граничными прямыми и . В том случае, если система неравенств (20), (21) совместна, область ее решений есть множество точек, принадлежащих всем указанным полуплоскостям. Так как множество точек пересечения данных полуплоскостей – выпуклое, то областью допустимых решений задачи (19) – (21) является выпуклое множество, которое называется многоугольником решений (введенный ранее термин “многогранник решений” обычно употребляется, если ). Стороны этого многоугольника лежат на прямых, уравнения которых получаются из исходной системы ограничений заменой знаков неравенств на знаки точных равенств.

Таким образом, исходная задача линейного программирования состоит в нахождении такой точки многоугольника решений, в которой целевая функция F принимает максимальное значение. Эта точка существует тогда, когда многоугольник решений не пуст и на нем целевая функция ограничена сверху. При указанных условиях в одной из вершин многоугольника решений целевая функция принимает максимальное значение. Для определения данной вершины построим линию уровня (где h – некоторая постоянная), проходящую через многоугольник решений, и будем передвигать ее в направлении вектора до тех пор, пока она не пройдет через ее последнюю общую точку с многоугольником решений. Координаты указанной точки и определяют оптимальный план данной задачи.

Заканчивая рассмотрение геометрической интерпретации задачи (19) – (21), отметим, что при нахождении ее решения могут встретиться случаи, изображенные на рис. 1 - 4. Рис. 1 характеризует такой случай, когда целевая функция принимает максимальное значение в единственной точке А. Из рис. 2 видно, что максимальное значение целевая функция принимает в любой точке отрезка АВ. На рис. 3 изображен случай, когда целевая функция не ограничена сверху на множестве допустимых решений, а на рис. 4 – случай, когда система ограничений задачи несовместна.

Отметим, что нахождение минимального значения линейной функции при данной системе ограничений отличается от нахождения ее максимального значения при тех же ограничениях лишь тем, что линия уровня передвигается не в направлении вектора а в противоположном направлении. Таким образом, отмеченные выше случаи, встречающиеся при нахождении максимального значения целевой функции, имеют место и при определении ее минимального значения.

Итак, нахождение решения задачи линейного программирования (19) – (21) на основе ее геометрической интерпретации включает следующие этапы:

1. Строят прямые, уравнения которых получаются в результате замены в ограничениях (20) и (21) знаков неравенств на знаки точных равенств.

2. Находят полуплоскости, определяемые каждым из ограничений задачи.

3. Находят многоугольник решений.

4. Строят вектор .

5. Строят прямую , проходящую через многоугольник решений.

6. Передвигают прямую в направлении вектора , в результате чего-либо находят точку (точки), в которой целевая функция принимает максимальное значение, либо устанавливают неограниченность сверху функции на множестве планов.

7. Определяют координаты точки максимума функции и вычисляют значение целевой функции в этой точке.

Date: 2015-06-06; view: 974; Нарушение авторских прав; Помощь в написании работы --> СЮДА...



mydocx.ru - 2015-2024 year. (0.005 sec.) Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав - Пожаловаться на публикацию